Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

23/01/2011

La géométrie classique , Objets et transformations Benoît Rittaud Essai (broché). Paru en 04/2000

La géométrie classique

La géométrie classique , Objets et transformationsBenoît Rittaud Voir tout son univers

  • Essai (broché). Paru en 04/2000
  • Expédié sous 4 à 8 jours
    POUR COMMANDER

10:17 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Discours de la méthode plus La Dioptrique Les Météores et La Géométrie , pour bien conduire sa raison et chercher la vérité dans les sciences qui sont des essais de cette méthode... René Descartes , Jean-Robert Armogathe Livre

Discours de la méthode plus La Dioptrique Les Météores et La Géométrie , pour bien conduire sa raison et chercher la vérité dans les sciences qui sont des essais de cette méthode...René Descartes Voir tout son univers, Jean-Robert Armogathe

  • (donnée non spécifiée). Paru en 08/1987

POUR COMMANDER

10:14 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Descartes et Pappus

Descartes et Pappus

Source : http://debart.pagesperso-orange.fr/geometrie/figures_de_p...

Extraits et commentaires des textes de « La Géométrie » de René Descartes sur le problème de Pappus, permettant de retrouver une démarche historique dans l'enseignement des mathématiques.

Le problème de Pappus, solution neuve (en 1637) pour un problème ancien, va permettre à Descartes d'expliciter ses théories sur les solutions « à la règle et au compas » et « la nature des courbes planes ».

1. Le problème de Pappus

Le problème de Pappus est la recherche du lieu géométrique d'un point C tel que le produit des distances de C à deux d'entre elles soit égal au produit des distances de C aux deux autres droites pour le problème avec quatre droites ;
tel que le produit des distances de C à deux d'entre elles soit égal au carré du produit des distances de C à la troisième droite pour le problème avec trois droites.

Descartes utilise des rapports de similitude plutôt que des distances et cherche le lieu du point C dont les segments menés de ce point à chacune des droites suivant des directions données ont des produits égaux.

2. Géométrie cartésienne - Repère

Un lieu de Pappus « à quatre droites » est l'ensemble des points C tel que CB × CF = CD × CH.
En liaison avec la notion moderne de « distance d'un point à une droite donnée par son équation », Descartes calcule CB = y, CF = ax + by + c, CD = dx + ey et CH = fx + gy + h.
La relation donne une équation du second degré y × (ax + by + c) = (dx + ey) × (fx + gy + h) qui est celle d'une conique.

(Voir la note sur le Problème de Pappus de Paul Tannery.)

Utiliser un repère d'origine A, l'axe des abscisses étant la droite horizontale (AG) ; l'axe des ordonnées dans la direction (BC) faisant un angle de 60° avec l'horizontale, orienté vers le bas.

Sur la droite horizontale G est placé à 5 cm : l = AG = 5 et E à 3 cm : k = EA = 3.
Le point variable C est repéré par ses coordonnées x et y telles que AB = x et CB = y.
Les paramètres b à g indiquent les proportions des côtés des triangles déterminés par les angles de la figure.

Par exemple, dans le triangle ARB on a AB/BR = z/b d'où BR/AB = b/z. La variable z est introduite, pour respecter la règle des homogènes de Viète.
Dans les calculs, s'en affranchir en choisissant z = 1. Dans les exemples choisir un triangle où b = 1.

La droite (ES) fait un angle de 30° avec l'horizontale : on a d = d = BS/BE = 1/2 = 1/2.
Dans l'autre sens, la droite (GT) fait un angle de 30° avec l'horizontale : le triangle BGT a donc deux angles de 30°. Soit le paramètre f = BT/BG = 1.

Cas général

Figure de baseLes figures seront faites avec les valeurs par défaut des paramètres suivantes :
z = 1 ; b = 1 ; d = 1/2 ; f = 1 ; k = 3 et l = 5.

Les calculs des longueurs en fonction des coordonnées x et y sont donc :
CB = y,
CF = e CS = e(y + dk + dx) = e(y + 3/2 + x/2),
CD = c CR = c (y + bx) = c (y + x),
CH= g CT = g (y + fl fx) = g (y + 5 - x).

De l'égalité CB × CF = CD × CH se déduit l'équation :
e y (y + 3/2 + x/2) = c g (y + x) (y + 5 - x).

On trouve bien l'équation du second degré d'une conique :

cg x2 + e/2 xy + (e - cgy2 - 5 cg x + (3/2e - 5 cgy = 0.

Descartes trouve l'équation fonctionnelle y = m - n/z x + rac(m² + ox+ px²/m).
Dans son repère y est égal à BC ; longueur qu'il décompose en trois parties BK, KL et LC : il place sur (BC) les points K tel que BK = m et L tel que KL = nx, LC est alors égal à rac(m² + ox+ px²/m).

Il complète la construction avec IK parallèle et égal à AB.

Le paramètre a est défini par la proportion KL/IL = n/a, soit IL = ax.

Si la conique n'est pas une parabole, son centre M est situé sur la droite (IL) tel que : IM = aom/(2p).
La droite (IL) coupe la conique en N.

La moitié du rayon traversant est alors MN = am/(2p)rac(o²+4mp).

L'excentricité est égale à e²/16 - cg(e - cg). Si elle positive il s'agit d'une hyperbole, si elle nulle d'une parabole et enfin d'une ellipse si elle est négative.

Nouveaux repères

Repères

g2w Télécharger la figure GéoPlan pap_rep.g2w

Le point C(x, y) de coordonnées x et y dans le repère de Descartes est tel que vec(AC) = x vec(i) + yvec(j)

Dans un repère orthonormé direct d'origine A ce même point C(X, Y) de nouvelles coordonnées X et Y vérifie la relation vec(AC) = X vec(i) + Yvec(J)
avec vec(j) = 1/2 vec(i) - rac(3)/2 vec(J),

d'où vec(J) = 1/rac(3) vec(i) - 2/rac(3) vec(j).

Les expressions du vecteur vec(AC) sont dans l'ancien et le nouveau repère :
vec(AC) = x vec(i) + y vec(j) = x vec(i) + y(1/2 vec(i) - rac(3)/2 vec(J)) = (x + 1/2 yvec(i)rac(3)/2 vec(J),

vec(AC) = X vec(i) + Yvec(J)X vec(i) + Y(1/rac(3) vec(i) -2/rac(3) vec(j)) = (X + 1/rac(3) Yvec(i) - 2/rac(3) Y vec(j).

En identifiant les coordonnées, on obtient le changement de variable :
x=X+Y/rac(3); y= (2/rac(3))Y.

L'équation de la conique dans le repère orthonormé direct d'origine A est  :

cg X2 + (2cg-e)/rac(3) XY + (e -cgY2 - 5 cg X + (5 cg - 3eY/rac(3) = 0.

Cette conique passe par les quatre points A, G, P et Q d'intersection des droites données.
P et Q de coordonnées P(7/3-8/3) et Q(3, -3) dans le repère oblique s'écrivent P(1, 4rac(3)/3) et Q(3/23rac(3)/2) dans le repère orthonormé.

Axes principaux

Un deuxième changement de repère permet d'obtenir l'équation par rapport aux directions principales.

Les deux axes AX’ et AY’ de la conique forment le repère (A, vect(I)’, vec(J)’), faisant un angle α avec les axes AX et AY du repère précédent.

Les directions de la conique sont donc :
vect(I)’ = vec(i) cos α + vec(J)sin α,

vec(J)’ = − vec(i) sin α + vec(J) cos α.

Les expressions du vecteur vec(AC) sont dans les repères orthonormés :
vec(AC) = X vec(i) + Yvec(J)
vec(AC) = X’vect(I)’ + Y’vec(J)’ = X’(vec(i) cos α + vec(J) sinα) + Y’(- vec(i) sin α + vec(J) cos α)

Par identification, on trouve :
X = X'cos α - Y' sin α ; Y= X' sin α + Y' cos α.

Les axes sont les directions principales si le coefficient du produit X’Y’ est nul.

Les termes de second degré sont : cg X2 + (2cg-e)/rac(3) XY + (e - cgY2.

Avec les nouvelles variables on a alors :
cg (X’ cos α - Y’ sin α)2 + (2cg-e)/rac(3) (X’cos α - Y’ sin α)(X’ sin α + Y’ cos α) + (e - cg) (X’ sin α + Y’ cos α)2

Le coefficient de X’Y’ est :
- 2cg cos α sin α + (2cg-e)/rac(3) (cos2α - sin2α) + (e - cg) sin α cos α =
(2cg-e)/rac(3)(cos2 α-sin2α - 2 rac(3) sin α cos α) = (2cg-e)/(rac(3) cos²α)(1 - tan2α - 2 rac(3) tan α).

Ce coefficient est nul si tan α est égal à 2 - rac(3) ou à - 2 - rac(3), ce qui correspond à des angles de 15° et de -75°.

Choisir α = 15°. Le calcul des fonctions trigonométriques permet d'obtenir le changement de variable :

X = X'cos α - Y' sin α ; Y= X' sin α + Y' cos α

sommaire
Accueil Descartes et les Mathématiques

3. Cercle

Cercle

g2w Télécharger la figure GéoPlan pap_cerc.g2w

En plus des valeurs par défaut z = 1 ; b = 1 ; d = 1/2 ; f=1 ; k = 3 et l = 5, prendre comme exemple les paramètres c = 3/2e = 2 et g = 2/3.

On a alors CF = e CS = 2(y + 3/2 + x/2) = 2y + 3 + x et c g = 1,
l'égalité CB × CF = CD × CH donne : y(2y + 3 + x) = (y + x) (y + 5 - x).

d'où l'équation x2 + xy + y2 - 5x - 2y = 0.

y2 + xy - 2y est le début du carré de (y + 1/2 x - 1).

L'équation peut alors s'écrire : (y + 1/2 x - 1)2 + 3/4 x2 - 4x - 1 = 0.

D'où (y + 1/2 x - 1)2 = − 3/4 x2 + 4x + 1

y + 1/2 x - 1 = ± rac(-3/4 x² + 4x + 1).

On a finalement l'expression fonctionnelle de Descartes :
y = 1 - 1/2 x ± rac(-3/4 x² + 4x + 1)

Par identification on a les quatre paramètres m = 1, o = 4, p = 3/4 et n = 1/2.

fig.9

Descartes place sur (BC) les points K tel que BK = m = 1 et L tel que KL = nx = 1/2 x, puis IK parallèle et égal à AB.

Le triangle ILK est rectangle avec un angle de 30°. n en est le sinus égal à 1/2 ; le cosinus est donc a = rac(3/4) = rac(3)/2.

On trouve IM = aom/(2p) = rac(16/3) et le rayon MN = (aom/(2p))rac(o² + 4mp) = rac(19/3).

Dans le repère orthonormé le changement de coordonnées donne l'équation :
X2 + Y2 - 5X - rac(3)/3 Y = 0
qui est bien l'équation du cercle de centre M(5/2rac(3)/6) et de rayon rac(19/3).

sommaire
Accueil Descartes et les Mathématiques

4. Ellipse

Comme Descartes le propose : « et on peut facilement examiner tous les autres cas en même sorte ».

Ellipse

g2w Télécharger la figure GéoPlan pap_elip.g2w

Gardons les mêmes paramètres initiaux que pour le cercle :
valeurs par défaut z = 1 ; b = 1 ; d = 1/2 ;  f = 1 ; k = 3 et l = 5, paramètres c = 3/2e = 2 et modifions g = 1.

Hypebole de Pappus

On a alors : CF = e CS = 2(y + 3/2 + x/2) = 2y + 3 + x,
l'égalité CB × CF = CD × CH donne : y (2y + 3 + x) = 3/2(y + x) (y + 5 - x).

D'où en multipliant par 2 l'équation : 3x2 + 2xy + y2 - 15x - 9y = 0.
y2 + 2xy - 9y est le début du carré de (y + x - 9/2).

L'équation peut alors s'écrire : (y + x - 9/2)2 + 2x2 - 6x - 81/4 = 0.

d'où l'expression y = 9/2x ± rac(81/4 + 6x - 2x²).

Par identification on a les quatre paramètres : m = 9/2o = 6, p = 9 et n =1.

Placer sur (BC) les points K tel que BK = m = 9/2 et L tel que KL = nx = x, puis tracer le segment IK parallèle et égal à AB.

Le triangle ILK est ici équilatéral et le paramètre a est égal à 1.

Le centre M de l'ellipse est situé sur la droite (IL) tel que IM = aom/(2p) = 3/2.

La droite (IL) coupe la conique en N et N’.

La moitié du rayon traversant est alors MN = (aom/(2p))rac(o² + 4mp) = 3rac(22)/4.

 

Dans le repère orthonormé le changement de variables donne l'équation :

3X2 + 2 rac(3)/3 XY + Y2 - 15X + rac(3) Y = 0.

On trouve alors (Y + rac(3)/3X + rac(3)/2)2 + 8/3 x² - 16 x - 3/4 = 0,

d'où les équations Y = − rac(3)/3X - rac(3)/2 ± rac(8/3 x² + 16 x + 3/4).

Dans ce repère les coordonnées de M et I sont M(3, - 2rac(3)/3) et I(9/4,- 9 rac(3)/4).

Dans le repère ayant comme directions les axes principaux l'ellipse a pour équation :
équation

Ce que l'on peut réduire sous la forme : équation réduite.

X’M et Y’M sont les coordonnées du centre M de l'ellipse :
coordonnées de M.

Les rayons A et B de l'ellipse obtenus à partir de l'équation : équation réduite de l'ellipse.

Ils sont donc égaux à :
A = rayon A ≈ 5,411
B = rayon B ≈ 2,8.

sommaire
Accueil Descartes et les Mathématiques

5. Hyperbole

Hyperbole

g2w Télécharger la figure GéoPlan pap_hype.g2w

Valeurs par défaut z = 1 ; b = 1 ; d = 1/2;  f = 1 ; k = 3 et l = 5, paramètres c = 3/2e = 1 et g = 2 donc le point F est en S.

On a alors cg = 3.

Le segment CF mesure CF = y + 3/2 + x/2,

l'égalité CB ×CF = CD × CH donne : y (y + 3/2 + x/2) = 3/2(y + x) × 2 (y + 5 - x).

D'où l'équation 3x2 + 1/2 xy- 2 y2 - 15x - 27/2y = 0.

En divisant par 2, on obtient y2 - 1/4xy + 27/4y = 3/2x2 - 15/2x ; qui est le début du carré de (y - 1/8x + 27/8).

L'équation peut alors s'écrire : (y - 1/8x + 27/8)2 = 97/64x2 - 267/32x + 729/64,

d'où l'expression : y = 1/8 x - 27/8±rac(729/64 - 267/32 x + 97/64 x²).

Par identification on a les quatre paramètres : m = − 27/8o = − 267/32p = 2619/512 et n = − 1/8.

Placer sur (BC) les points K tel que BK = −m = 27/8 et L tel que KL = nx = 1/8x, puis tracer le segment IK parallèle et égal à AB.

Dans le triangle ILK le paramètre a est égal à 1,068.

Le centre M de la conique est situé sur la droite (IL) tel que IM = aom/(2p) ≈ 2,939.

La droite (IL) coupe l'hyperbole en N et N’.

La moitié du rayon traversant est alors MN = (aom/(2p))rac(o² + 4mp) ≈ 0,264.

Dans le repère orthonormé le changement de variables donne l'équation :

3X2 + 5rac(3)/3XY - 2Y2 - 15X + 4 rac(3) Y = 0.

En divisant par 2, on trouve : (Y - 5rac(3)/3X - rac(3))2 = 97/48 X² - 5X + 3,
d'où les équations Y = 5rac(3)/3X + rac(3) ± rac(97/48 X² - 5X + 3).

On peut remarquer une erreur de directions principales dans le dessin de l'hyperbole.

Dans le repère ayant comme directions les axes principaux l'hyperbole a pour équation :
équation de l'hyperbole.

Que l'on peut réduire sous la forme :
équation réduite.

X’M et Y’M sont les coordonnées du centre M de l'hyperbole :
Coordonnées du centre.

Les rayons A et B de l'hyperbole peuvent être obtenus à partir de l'équation :

équation réduite.

sommaire
Accueil Descartes et les Mathématiques

6. Parabole

La conique d'équation :

cg x2 + e/2 xy + (e - cgy2 - 5 cg x + (3/2e - 5 cgy = 0

est une parabole si son excentricité e^2/16 - cg (e - cg) est nulle.

En choisissant cg = 1 le paramètre e d'une parabole satisfait à l'équation : e^2/16 - e + 1 = 0
qui admet deux solutions 4(2 + rac(3)) et 4(2 - rac(3)).

parabole

g2w Télécharger la figure GéoPlan pap_para.g2w

Étudions le cas e = 4(2 - rac(3)) avec les valeurs par défaut z = 1 ; b = 1 ; d = 1/2 ; f = 1 ; k = 3 et l = 5 ; les autres paramètres étant c =1 et g = 1.
La distance CF est égale à : CF = 4(2 - rac(3)) (y + 3/2 + x/2) = 2(2 - rac(3)) (2y + 3 + x),
L'égalité CB × CF = CD × CH donne : 2(2 - rac(3)y (2y + 3 + x) = (y + x) (y + 5 - x).
Le coefficient de y2 est : e - cg = 7 - 4 rac(3) = (2 - rac(3))2.
D'où l'équation : x2 + 2(2 - rac(3)xy + (2 - rac(3))2 y2 - 5x + (7 - 6rac(3)y = 0.
Le développement du début du carré donne : [(2 - rac(3))y + x - (2 + 5rac(3)/2)]2 = (1 - 5rac(3))x + (2 + 5rac(3)/2)2.

(2 - rac(3)y = − x + (2 + 5rac(3)/2± rac(aX + b).

En divisant par 2 - rac(3), on obtient :

y = − (2 + rac(3)x + 23/2 + 7 rac(3) ± rac(ax + b)

Par identification on obtient les quatre paramètres : m = 23/2 + 7 rac(3)o = − 53 - 31 rac(3) et n = (2 + rac(3)).
Placer sur (BC) les points K tel que BK = m et L tel que KL = nx, puis tracer le segment IK parallèle et égal à AB.
Dans le triangle ILK le paramètre a est égal à 3,346.
Dans le repère orthonormé d'origine A le changement de variables donne l'équation :

X2 + 2(2 - rac(3)XY + (7 - 4rac(3)Y2 - 5X + (12 - 19rac(3)/3)Y = 0.

En utilisant le début du carré  :
[(2 - rac(3))Y + X + (5/2 - rac(3)/3)]2 = aX + b,

(2 - rac(3))Y = − X - (5/2 - rac(3)/3± rac(aX + b)

Y = (2 + rac(3))[- X + (- 5/2 + rac(3)/3± rac(aX + b)]

D'où les équations Y = − (2 + rac(3)X - 11 rac(3)/6 - 4 ± rac(aX + b).

Dans le repère ayant comme directions les axes principaux, un deuxième changement de repère permet d'obtenir l'équation :

équation de la parabole.

Cette équation peut être réduite sous la forme :
équation de la parabole

Si X’M et Y’M sont les coordonnées du sommet M de la parabole, l'équation de la conique est alors :
équation de la parabole

avec Coordonnées de M

7. Conclusion de Descartes

Correspondance des diverses éditions de La Géométrie

 

Œuvre mathématique
de René Descartes

La Géométrie
Livre premier

La Géométrie
Livre deuxième

Note sur le Problème de Pappus

Le problème de Pappus

Les coniques comme lieux de points (niveau bac + 2)

1. La méthode de Descartes : 

2. La mise en équation du problème : 

3. La solution de Descartes : 

4. 5. 6. Trois exemples d'autres solutions : 

Le problème de Pappus
figures classiques :

1. Le problème de Pappus

2. Géométrie cartésienne

3. Cercle

4. Ellipse

5. Hyperbole

6. Parabole

Le problème de Pappus

Accueil 
Descartes et les Mathématiques

Faire de l'histoire
… avec GéoPlan

Les Éléments d'Euclide


Les coniques du problème de Pappus
avec GeoGebra

Exemple tiré de Pappus.

Et on peut le voir aussi fort clairement de ce que Pappus a mis au commencement de son septième livre, où après s'être arrêté quelque temps à dénombrer tout ce qui avait été écrit en géométrie par ceux qui l'avaient précédé, il parle enfin d'une question qu'il dit que ni Euclide, ni Apollonius, ni aucun autre, n'avaient su entièrement résoudre ; et voici ses mots :

Je cite plutôt la version latine que le texte grec, afin que chacun l'entende plus aisément

Mais ce lieu à 3 et 4 lignes, dont Apollonius dit, à propos de son livre III, qu'Euclide ne l'a pas complètement traité, lui-même, pas plus qu'aucun autre, n'aurait pu l'achever, ni même rien ajouter à ce qu'Euclide en a écrit, du moins en s'en tenant exclusivement aux Éléments des Coniques déjà démontrés au temps d'Euclide, etc.

Et un peu après il explique ainsi quelle est cette question :

Voici quel est ce lieu à 3 et 4 lignes, à propos duquel Apollonius se décerne de grands éloges pour ses additions et dont il aurait dû savoir gré au premier qui en a écrit. [...]

La Géométrie - Page 304

La question donc qui avait été commencée à résoudre par Euclide et poursuivie par Apollonius, sans avoir été achevée par personne, était telle :
Ayant trois ou quatre, ou un plus grand nombre de lignes droites données par position(droites parallèles à une direction – position – donnée) ; premièrement on demande un point, duquel on puisse tirer autant d'autres lignes droites, une sur chacune des données, qui fassent avec elles des angles donnés, et que le rectangle (produit des distances de ce point aux deux droites) contenu en deux de celles qui seront tirées d'un même point, ait la proportion donnée avec le rectangle des deux autres s'il y en a quatre. [...]

Page 307

[...] Puis à cause qu'il y a toujours une infinité de divers points qui peuvent satisfaire à ce qui est ici demandé, il est aussi requis de connaître et de tracer la ligne dans laquelle ils doivent tous se trouver. Et Pappus dit que lorsqu'il n'y a que trois ou quatre lignes droites données, c'est en une des trois sections coniques ; mais il n'entreprend point de la déterminer ni de la décrire, non plus que d'expliquer celles où tous ces points se doivent trouver, lorsque la question est proposée en un plus grand nombre de lignes. Seulement il ajoute que les Anciens en avaient imaginé une qu'ils montraient y être utile, mais qui semblait la plus manifeste, et qui n'était pas toutefois la première. Ce qui m'a donné occasion d'essayer si, par la méthode dont je me sers, on peut aller aussi loin qu'ils ont été.

Réponse à la question de Pappus

Et premièrement j'ai connu que cette question n'étant proposée qu'en trois, ou quatre, ou cinq lignes, on peut toujours trouver les points cherchés par la géométrie simple, c'est-à-dire en ne se servant que de la règle et du compas, ni ne faisant autre chose que ce qui a déjà été dit ;
Puis j'ai trouvé aussi que lorsqu'il n'y a que trois ou quatre lignes données, les points cherchés se rencontrent tous, non seulement en l'une des trois sections coniques, mais quelquefois aussi en la circonférence d'un cercle ou en une ligne droite ;

La Géométrie - Page 306

[...]

Au reste, la première et la plus simple de toutes, après les sections coniques, est celle qu'on peut décrire par l'intersection d'une parabole et d'une ligne droite, en la façon qui sera tantôt expliquée.

En sorte que je pense avoir entièrement satisfait à ce que Pappus nous dit avoir été cherché en ceci par les Anciens ; et je tâcherai d'en mettre la démonstration en peu de mots, car il m'ennuie déjà d'en tant écrire.

Soient AB, AD, EF, GH, etc., plusieurs lignes données par position, et qu'il faille trouver un point, comme C, duquel ayant tiré d'autres lignes droites sur les données, comme CB, CD, CF et CH, en sorte que les angles CBA, CDA, CFE, CHG, etc., soient donnés,

 

La Géométrie - Page 309

et que ce qui est produit par la multiplication d'une partie de ces ligues soit égal à ce qui est produit par la multiplication des autres, ou bien qu'ils aient quelque autre proportion donnée, car cela ne rend point la question plus difficile.

Ici le problème de Pappus, étant donné les quatre droites AB, AD, EF, GH, est de trouver le lieu géométrique des points C dont les segments (en pointillés) menés de ce point C à chacune des droites suivant des directions données ont des produits égaux,
ici CB × CF = CD × CH.

Dans le livre premier, Descartes exprime les longueurs des segments en fonction de deux inconnues x et y pour aboutir à la conclusion du bas ce chapitre : « les quantités x et y qui se trouvent n'auront jamais plus de deux dimensions en ce qui ne sera produit que par la multiplication de deux lignes ».

Pour cette figure, ce n'est que dans le livre second qu'il fera le calcul des équations des coniques solutions.

Comment on doit poser les termes pour venir à l'équation en cet exemple.

Premièrement, je suppose la chose comme déjà faite, et pour me démêler de la confusion de toutes ces lignes je considère l'une des données, et l'une de celles qu'il faut trouver, par exemple AB et CE, comme les principales et auxquelles je tâche de rapporter ainsi toutes les autres.

Texte fondamental, où Descartes introduit, tout naturellement, les coordonnées x et y. Coordonnées dans un repère d'origine A, d'axes (AG) et la parallèle à RB,
avec x = AB et y = BC.

Que le segment de la ligne AB, qui est entre les points A et B, soit nommé x ; et que BC soit nommé y ; et que toutes les autres lignes données soient prolongées jusqu' à ce qu'elles coupent ces deux aussi prolongées, s'il est besoin, et si elles ne leur sont point parallèles ; comme vous voyez ici qu'elles coupent la ligne AB aux points A, E, G, et BC aux points R, S, T.

Puis à cause que tous les angles du triangle ARB sont donnés, la proportion qui est entre les côtés AB et BR est aussi donnée, et je la pose comme de z à b, de façon que AB étant x, RB sera bx/z, et la toute CR sera y + bx/z à cause que le point B tombe entre C et R ; car si R tombait entre C et B, CR serait y - bx/z ; et si C tombait entre B et R, CR serait -y + bx/z.

Tout de même les trois angles du triangle DRC sont donnés, et par conséquent aussi la proportion qui est entre les côtés CR et CD, que je pose comme de z à c, de façon que CR étant y + bx/z,

 

La Géométrie - Page 310

CD sera cy/z + bcx/z².

Après cela, pourceque (locution synonyme de parce que, utilisée par Descartes pour marquer la raison, la cause) les lignes AB, AD et EF sont données par position (droite donnée par position : droite parallèle à une direction – position – donnée), la distance qui est entre les points A et E est aussi donnée, et si on la nomme k, on aura EB égal à k + x ; mais ce serait k - x si le point B tombait entre E et A ; et -k + x si E tombait entre A et B.

Et pourceque les angles du triangle ESB sont tous donnés, la proportion de BE à BS est aussi donnée, et je la pose comme de z à d, si bien que BS est (dk+dx)/z, et la toute CS est (zy+dk+dx)/z; mais ce serait (zy-dk-dx)/z si le point S tombait entre B et C ; et ce serait (-zy+dk+dx)/z si C tombait entre B et S.

De plus les trois angles du triangle FSC sont donnés, et ensuite la

La Géométrie - Page 311

proportion de CS à CF, qui soit comme de z à e, et la toute CF sera (ezy+dek=dex)/z².

En même façon AG, que je nomme l, est donnée, et BG est l - x et à cause du triangle BGT, la proportion de BG à BT est aussi donnée, qui soit comme de z à f, et BT sera (fl-fx)/z, et CT = (zy+fl-fx)/z.
Puis derechef la proportion de CT à CH est donnée à cause du triangle TCH, et la posant comme de z à g, on aura CH = g(zy+fl-fx)/z².

Et ainsi vous voyez qu'en tel nombre de lignes données par position qu'on puisse avoir toutes les lignes tirées dessus du point C à angles donnés, suivant la teneur de la question, se peuvent toujours exprimer chacune par trois termes, dont l'un est composé de la quantité inconnue y, multipliée ou divisée par quelque autre connue ; et l'autre de la quantité inconnue x, aussi multipliée ou divisée par quelque autre connue ; et le troisième d'une quantité toute connue ; excepté seulement si elles sont parallèles, ou bien à la ligne AB, auquel cas le terme composé de la quantité x sera nul ; ou bien à la ligne CB, auquel cas celui qui est composé de la quantité y sera nul ; ainsi qu'il est trop manifeste pour que je m'arrête à l'expliquer.

Et pour les signes + et - qui se joignent à ces termes, ils peuvent être changés en toutes les façons imaginables.

Puis vous voyez aussi que, multipliant plusieurs de ces lignes l'une par l'autre, les quantitésx et y qui se trouvent dans le produit n'y peuvent avoir que chacune autant de dimensions qu'il y a eu de lignes à l'explication desquelles

La Géométrie - Page 312

elles servent, qui ont été ainsi multipliées ; en sorte qu'elles n'auront jamais plus de deux dimensions en ce qui ne sera produit que par la multiplication de deux lignes ; ni plus de trois, en ce qui ne sera produit que pair la multiplication de trois, et ainsi à l'infini.

Comment on trouve que ce problème est plan lorsqu'il n'est point proposé en plus de cinq lignes

De plus, à cause que pour déterminer le point C, il n'y a qu'une seule condition qui soit requise, à savoir que ce qui est produit par la multiplication d'un certain nombre de ces lignes soit égal, ou, ce qui n'est de rien plus malaisé, ait la proportion donnée à ce qui est produit par la multiplication des autres ;

on peut prendre à discrétion l'une des deux quantités inconnues x ou y, et chercher l'autre par cette équation, en laquelle il est évident que, lorsque la question n'est point posée en plus de cinq lignes, la quantité x, qui ne sert point à l'expression de la première, peut toujours n'y avoir que deux dimensions ; de façon que, prenant une quantité connue pour y, il ne restera que x2 = + ou - ax + ou - b2 ; et ainsi on pourra trouver la quantité x avec la règle et le compas, en la façon tantôt expliquée.

Ici, une des découvertes fondamentales de Descartes, et vraiment novatrice : la notion de fonction :

Même, prenant successivement infinies diverses grandeurs pour la ligne y, on en trouvera aussi infinies pour la ligne x, et ainsi on aura une infinité de divers points, tels que celui qui est marqué C, par le moyen desquels on décrira la ligne courbe demandée.

Il se peut faire aussi, la question étant proposée en six ou plus grand nombre de lignes, s'il y en a entre les données qui soient parallèles à BA ou BC, que l'une des deux quantités x ou y n'ait que deux dimensions en...

Sommaire
Accueil Descartes et les Mathématiques

La Géométrie - Page 313

La Géométrie - Bas page 334

La Géométrie - Haut pge 335

Quels sont les lieux plans et solides, et la façon de les trouver.

Au reste, à cause que les équations qui ne montent que jusqu'au carré sont toutes comprises en ce que je viens d'expliquer ; non seulement le problème des Anciens en trois et quatre lignes est ici entièrement achevé, mais aussi tout ce qui appartient à ce qu'ils nommaient la composition des lieux solides, et par conséquent aussi à celle des lieux plans, à cause qu'ils sont compris dans les solides car ces lieux ne sont autre chose, sinon que, lorsqu'il est question de trouver quelque point auquel il manque une condition pour être entièrement déterminé, ainsi qu'il arrive en cet exemple, tous les points d'une même ligne peuvent être pris pour celui qui est demandé.

Et si cette ligne est droite ou circulaire on la nomme un lieu plan. Mais si c'est une parabole, une hyperbole, ou une ellipse, on la nomme lieu solide.
Et toutefois et quand cela est, on peut venir à une équation qui contient deux quantités inconnues, et est pareille à quelques-unes de celles que je viens de résoudre.

 

édition
1637

Victor
Cousin

Adam et
Tannery

Le problème de Pappus

304

321

377

Suite de l'explication de la question de Pappus

323

341

396

Conclusion de Descartes sur le problème de Pappus

334

351

406

Lieu à cinq droites

335

353

407

Tables

Table II

539

511

Note sur le Problème de Pappus

Édition interactive avec GeoGebra

Édition interactive
avec GéoPlan

Œuvre mathématique
de René Descartes

La Géométrie
Livre premier

La Géométrie
Livre deuxième

Le problème de Pappus

Les coniques comme lieux de points (niveau bac + 2)

1. La méthode de Descartes : 

2. La mise en équation du problème : 

3. La solution de Descartes : 

4. 5. 6. Trois exemples d'autres solutions :

 
 

1. Le problème de Pappus

2. Géométrie cartésienne

3. Cercle

4. Ellipse

5. Hyperbole

6. Parabole

Théorème de Pappus : plan projectif
Parallélogramme de Pappus : homothétie
Figure de Pappus : Thalès
Démonstration de Pappus : Pythagore

Autres problèmes de Pappus
Problème de Pappus - échelle contre un mur
Problème de Pappus - cercles tangents en chaîne

« Descartes et les Mathématiques »

Accueil : http://debart.pagesperso-orange.fr

 

Suggestions, remarques, problèmes : me contacter.
Page no 23, réalisée le 2/11/2002 - mise à jour le 27/10/2010

Moteur de recherche - Glossaire
Logo Google  

Publimath Publimath : problème de Pappus

10:07 Publié dans Pappus, Réné Descartes | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

La Géométrie de Descartes - Livre premier Les opérations algébriques

La Géométrie de Descartes - Livre premier
Les opérations algébriques

Source : http://debart.pagesperso-orange.fr/geometrie/geom_descart...

Textes choisis de « La Géométrie » de René Descartes et commentaires sur les opérations algébriques, le théorème de Thalès,
et l'équation du second degré, permettant de retrouver une démarche historique dans l'enseignement des mathématiques.

1. La Géométrie - Introduction

La Géométrie de Descartes demeure aujourd'hui, comme au moment de sa parution, un livre de lecture difficile.

En La Géométrie dit-il, «  je tâche à donner une façon générale pour résoudre tous les problèmes qui ne l'on encore jamais été. »
Il demande qu'on prenne la peine de lire « La Géométrie » la plume à la main en suivant tous les calculs qui peuvent sembler d'abord difficile ; mais on devrait s'y habituer en peu de jours.
Il conseille de passer du premier
 au « troisième livreavant de lire le second. »

Descartes impatient expose l'essentiel d'une solution neuve dans l'ordre de l'invention et il répugne à passer du temps pour la démontrer.
La méthode de Descartes est de traiter tout problème de géométrie par le calcul. Il l'applique ici aux calculs algébriques et aux équations du second degré.

Advertissement.

Avertissement avant la Géométrie« Jusqu'ici (dans le discours de la méthode) j'ai taché de me rendre intelligible à tout le monde, mais pour ce traité je crains, qu'il ne pourra être lu que par ceux, qui savent déjà ce qui est dans les livres de Géométrie. Car d'autant qu'ils contiennent plusieurs vérités fort bien démontrées, j'ai cru qu'il serait superflu de les répéter, et n'ai pas laissé pour cela de m'en servir. »

Dès cette introduction, Descartes paraît ainsi se faire l'adepte des méthodes actives. Tout au long de son traité, il ne cessera de réaffirmer cette position :

« Au reste j'ay omis icy les demonstrations de la plus part de ce que jay dit a cause qu'elles m'ont semblé si faciles, que pourvûque vous preniés la peine d'examiner methodiquement si jay failly, elles se presenteront a vous d'elles mesme : et il sera plus utile de les apprendre en cete façon, qu'en les lisant. » (livre troisiesme, page 389)

Avec un certain humour, ce parti pris de l'auteur rend l'ouvrage exploitable au lycée.

Voici des exemples extraits d'une part du Livre Premier où sont exposées des méthodes analytiques, d'autre part du Livre Troisième où l'on découvre une résolution de problème avec une équation (du quatrième degré) et le calcul de la racine cubique à l'aide d'une parabole, puis la trisection de l'angle.


2. « La Géométrie » - Livre premier

3. Le théorème de Thalès

Descartes commence sa Géométrie en introduisant l'unité dans une configuration du théorème de Thalès.

 

4. L'Extraction de la racine quarrée.

5. L'équation du second degré

Les Babyloniens, au deuxième millénaire avant J.-C., savaient trouver les solutions positives des équations du second degré avec la formule algébrique.
Ces formules ont été ignorées par les Égyptiens et les Grecs et réintroduites par Diophante au IVe siècle et transmises à l'Occident par le mathématicien Al-Harizmi au IXe siècle.

Commentaires : Équations z2 = a z + b2 et z2 = - a z + b2 ayant une seule racine positive

Descartes fait une seule figure pour résoudre les deux types d'équations : z2 = ± a z + b2. Le coefficient constant b2 est élevé au carré pour rendre l'équation homogène.

Les calculs utilisent la puissance d'un point par rapport à un cercle, notion élémentaire disparue de l'enseignement français au lycée.
La puissance d'un point M, par rapport au cercle de centre N et de rayon NO = 1/2 a, est le produit MO × MP, où une sécante issue de M coupe le cercle en O et P.
Cette puissance est constante lorsque la droite varie. Elle est égale au carré b2 de la longueur b d'une tangente ML au cercle, issue de M.
La puissance est aussi égale à la différence du carré de la distance du point au centre du cercle moins le carré du rayon.

La méthode de Descartes ne lui fait chercher que la « vraye » racine positive de ces équations z (z ± a) = b2 (la « fausse » solution négative ne l'intéresse pas).

On montre facilement que MO × MP = (MN + NO).(MN - NO) = MN2 - NO2 = LM2 = b2.
MO et MP = MO - a sont respectivement les solutions positives des équations z2 - a z = b2 et z2 + az = b2.

Équation z2 = a z + b2

Vérifions que z = MO est la racine de la première équation. En effet MP = MO - a. Comme MO × MP = b2, on a z(z-a) = b2 et on trouve la solution de z2 - a z = b2.

Calculons cette racine MO. On a : MO = MN + ON = MN + 1/2 a, donc MN = z - 1/2 a.
Le théorème de Pythagore, dans le triangle rectangle LMN, d'hypoténuse MN et de petits côtés NL = 1/2 a et LM = b, permet d'écrire :
MN2 = NL2 + LM2 = (a/2)² + b2, soit MN = z - 1/2 a = rac(a²/4+ b²), le segment MO de longueur z = a/2 + rac(Δ) représente bien la racine positive de l'équation z2 = a z + b2.

Équation z2 = - a z + b2

Vérifions de même que z = MP est la racine de la deuxième équation. En effet MO = MP + a. Comme MO × MP = b2, on a (z+a)z = b2 et on trouve la solution de z2 + a z = b2.
Calculons MP = MN - NP, donc MN = z + 1/2 a, soit MN = z + 1/2 a = rac(a²/4+ b²), le segment MP de longueur z = - a/2 + rac(Δ) représente la racine positive de l'équation z2 = - a z + b2.

Équation ayant deux racines positives : z2 = az - b2

Correspondance des diverses éditions de La Géométrie

 

Œuvre mathématique
de René Descartes

La Géométrie
d'après l'édition de 1637

Faire de l'histoire
… avec GéoPlan

Descartes et les Mathématiques

Sommaire
Livre premier

1. La Géométrie - Introduction
2. La Géométrie de la règle et du compas
3. Le théorème de Thalès
4. La racine carrée
5. L'équation du second degré

Le Problème de Pappus
Les coniques du problème de Pappus avec GeoGebra

Note sur le Problème de Pappus

Livre second

De la nature des lignes courbes
La méthode des tangentes
Premier ovale de Descartes

Livre troisième

Les équations
La racine cubique

 

Timbre Descartes

On distingue en arrière-plan, au-dessus du 90c, deux ouvrages dont « La Géométrie ».

Page no 10, réalisée le 9/3/2001 - mise à jour le 29/9/2010

Des problèmes qu'on peut construire sans y employer que des cercles et des lignes droites.

C'est-à-dire à la règle et au compas.

 

« Tous les Problèmes de Géométrie se peuvent facilement réduire à tels termes, qu'il n'est besoin par après que de connaître la longueur de quelques lignes droites, pour les construire. »

Tous les problèmes de géométrie peuvent se réduire à des calculs sur des nombres.

C'est la pensée fondamentale de Descartes qui fonde la géométrie analytique.

 

Comment le calcul d'Arithmétique se rapporte aux opérations de Géométrie.

En géométrie, l'introduction d'un segment unité permet de réaliser toutes les opérations arithmétiques.

« Et comme toute l'Arithmétique n'est composée, que de quatre ou cinq opérations, qui sont l'Addition, la Soustraction, la Multiplication, la Division, et l'Extraction des racines, qu'on peut prendre pour une espèce de Division : Ainsi n'a-t-on autre chose à faire en Géométrie touchant les lignes qu'on cherche, pour les préparer à être connues, que leur en ajouter d'autres, ou en ôter, ou bien en ayant une, que je nommerai l'unité pour la rapporter d'autant mieux aux nombres, et qui peut ordinairement être prise à discrétion, puis en ayant encore deux autres, en trouver une quatrième, qui soit à l'une de ces deux, comme l'autre est à l'unité, ce qui est le même que la Multiplication ; ou bien en trouver une quatrième qui soit à l'une de ces deux, comme l'unité est à l'autre, ce qui est le même que la Division ; ou enfin trouver une, ou deux, ou plusieurs moyennes proportionnelles entre l'unité, et quelque autre ligne ; ce qui est le même que tirer la racine carrée, ou cubique, etc. Et je ne craindrai pas d'introduire ces termes d'Arithmétique en la Géométrie, afin de me rendre plus intelligible. »

 

Descartes traduit les opérations par une figure géométrique (triangles de Thalès) mettant en valeur les proportions.
Une de ces grandes innovations sera de prendre une unité.

Avec C = 1, on a les proportions suivantes, pour
  – la multiplication x de a par b : x/a = b/C,
  – la division x de a par b : x/a = C/b,
  – la racine x de a : x/C = a/x,
  – les moyennes proportionnelles x et y pour la racine cubique de a : x/C = y/x = a/y (Livre troisième).

Sommaire
Accueil Descartes et les Mathématiques

La Géométrie - Chapitre premier

La Multiplication

« Soit par exemple AB l'unité, et qu'il faille multiplier BD par BC, je n'ai qu'a joindre les points A et C, puis tirer DE parallèle à CA, et BE est le produit de cette Multiplication. »

La Division

« Ou bien s'il faut diviser BE par BD, ayant joint les points E et D, je tire AC parallèle à DE, et BC est le produit de cette division. »

Configuration de Thalès
La multiplication de 2 par 3
Cabri : la multiplication de 2 par 3

g2w Télécharger la figure GéoPlan thales_m.g2w
cabri Télécharger la figure Cabri Thales_m.fig

La division de 5 par 3
Cabri : la division de 5 par 3

g2w Télécharger la figure GéoPlan thales_d.g2w
cabri Télécharger la figure Cabri Thales_d.fig

Ou s'il faut tirer la racine carrée de GH, je lui ajoute en ligne droite FG, qui est l'unité, et divisant FH en deux parties égales au point K, du centre K je tire le cercle FIH, puis élevant du point G une ligne droite jusqu'à I, à angles droits sur FH, c'est GI la racine cherchée…

Le carré de la hauteur issue de l'angle droit d'un triangle rectangle est égal au produit des longueurs des segments découpés sur l'hypoténuse.

Racine carrée

La démonstration de cette propriété se fait dès la classe de troisième en remarquant que le triangle FIH, inscrit dans un demi-cercle, est rectangle en I. Les tangentes des angles H et Î des triangles rectangles semblables IHG et FIG sont égales.

tan H = GI/GH, tan Î = FG/GI ; d'où l'égalité des rapports GI/GH = FG/GI.

Le produit des « extrêmes » est égal au produit des « moyens » :
GI2 = FG × GH = 1 × GH = GH.
GI est la moyenne géométrique de FG et GH : GI = rac(GH).

Cette construction, due à Euclide, était connue, avant Descartes, par exemple de Bombelli (1526-1572) qui la cite dans son algebra publiée en 1572.

racine carrée

g2w Télécharger la figure GéoPlan cerc_rac.g2w

Comment on peut user de chiffres en géométrie

« Mais souvent on n'a pas besoin de tracer ainsi ces lignes sur le papier, et il suffit de les désigner par quelques lettres, chacune par une seule. Comme pour ajouter la ligne BD à GH, je nomme l'une a et l'autre b, et écris a + b ; et a - b pour soustraire b de a ; et ab pour les multiplier l'une par l'autre... »

À la fin du paragraphe, Descartes fait de la pédagogie :
Au reste, afin de ne pas manquer à se souvenir des noms de ces lignes, il en faut toujours faire un registre séparé à mesure qu'on les pose ou qu'on les change, écrivant par exemple :
AB égal 1, c'est-à-dire AB égal à 1, en utilisant comme symbole de l'égalité le signe égal, déformation de la diphtongue de ce mot en latin : æquare.
GH égal a.
BD égal b, etc.

Avec Descartes, les « lignes géométriques » prennent le statut de « variables réelles ».

La Géométrie- Débur page 300
Comment il faut venir aux équations qui servent à résoudre les problèmes.

Avec pédagogie, Descartes expose sa méthode :
  – « nommer » les différentes lignes d'une figure,
  – les classer en connues et inconnues,
  – mettre en équation et résoudre ces équations.

Ainsi, voulant résoudre quelque problème, on doit d'abord le considérer comme déjà fait, et donner des noms à toutes les lignes qui semblent nécessaires pour le construire, aussi bien à celles qui sont inconnues qu'aux autres.

Descartes utilisera le premier les lettres du début de l'alphabet a, b, c, d… pour les lignes connues et celles de la fin pour les lignes inconnues x, y, z.

Puis, sans considérer aucune différence entre ces lignes connues et inconnues, on doit parcourir la difficulté selon l'ordre qui montre le plus naturellement de tous en quelle sorte elles dépendent mutuellement les unes des autres, jusqu'à ce qu'on ait trouvé moyen d'exprimer une même quantité en deux façons, ce qui se nomme une équation ; car les termes de l'une de ces deux façons sont égaux à ceux de l'autre.

Une des nouveautés de Descartes :

Et on doit trouver autant de telles équations, qu'on a supposé de lignes, qui étaient inconnues.

[...]

La Géométrie- Fin page 300

Et on peut toujours réduire ainsi toutes les quantités inconnues à une seule, lorsque le problème se peut construire par des cercles et des lignes droites, ou aussi par des sections coniques, ou même par quelque autre ligne qui ne soit que d'un ou deux degrés plus composée.

Humour de Descartes : Je n'explique pas, pour ne pas vous ôter le plaisir d'apprendre !

Mais je ne m'arrête point à expliquer ceci plus en détail, à cause que je vous ôterais le plaisir de l'apprendre de vous-même, et l'utilité de cultiver votre esprit en vous y exerçant, qui est à mon avis la principale qu'on puisse tirer

Page 302

de cette science. Aussi que je n'y remarque rien de si difficile que ceux qui seront un peu versés en la géométrie commune et en l'algèbre, ait qui prendront garde à tout ce qui est en ce traité, ne puissent trouver.

Dans sa lettre à Mersenne du 20 avril 1646, Descartes se justifie :

Seulement y ai-je omis (dans la géométrie) quantité de choses, qui auraient pu servir à la rendre plus claire, ce que j'ai fait à dessein, et je ne voudrais pas y avoir manqué.

Son dessein est que ses ennemis (comme Roberval) ne puisse pas profiter de ses explications.

Sommaire
Accueil Descartes et les Mathématiques

La Géométrie- Page 301

Quels sont les problèmes plans.

Et que si elle peut être résolue par la géométrie ordinaire, c'est-à-dire en ne se servant que de lignes droites et circulaires tracées sur une superficie plate, lorsque la dernière équation aura été entièrement démêlée, il n'y restera tout au plus qu'un carré inconnu, égal à ce qui se produit de l'addition ou soustraction de sa racine multipliée par quelque quantité connue, et de quelque autre quantité aussi connue.

Les problèmes plans se ramènent à la résolution d'une équation du deuxième degré, que Descartes réduit à la forme :
z2 = ± a z ±  b2a et b étant positifs.
Il en représente les solutions positives par un segment.

Comment ils se résolvent.

Et lors cette racine, ou ligne inconnue, se trouve aisément.

Équation z2 = a z + b2

Car si j'ai par exemple

z2 = az + b2

je fais le triangle rectangle NLM, dont le côté LM est égal à b, racine carrée de la quantité connue b2, et l'autre LN est 1/2 a, la moitié de l'autre quantité connue qui était multipliée parz, que je suppose être la ligne inconnue ; puis prolongeant MN, la base de ce triangle,

Page 303 (ci-dessous)

jusqu'à O, en sorte qu'NO soit égale à NL, la toute OM est z la ligne cherchée. Et elle s'exprime en cette sorte :

z = a/2 + rac(Δ)

g2w Télécharger la figure GéoPlan eq_2de_1.g2w

La Géométrie - Page 302
Cabri : équation du second degré

Équation z2 = 10 z - 32

g2w Télécharger la figure GéoPlan eq_2de_2.g2w

Lorsque b ≤1/2 a, nous utilisons encore la puissance du point M par rapport au cercle de centre N et de rayon 1/2 a, qui est ML2 = MQ × MR.

Cette propriété se démontre en introduisant le milieu I de QR et en utilisant le théorème de Pythagore dans le triangle rectangle NIR.
MQ × MR = (MI - IR) × (MI + IR) = MI2 - IR2 = NR2 - IR2 = NI2 = ML2 = b2.

Or MQ + MR = a, donc si z est une des longueurs, l'autre est a - z, on a bien MQ × MR = z(a-z) = b2 et z est une des solutions de l'équation az - z2 = b2.

Dans le triangle rectangle NIR on a : IR2 = NR2 - NI2 = (a/2)² - b2 = a²/4 - b².

Première solution

Si z = MR on a IR = MR - IM = z - 1/2 a donc  IR2 = (z - 1/2 a)2 = a²/4 - b²,

finalement z - 1/2 a = rac(a²/4 - b²), d'où z = a/2 + rac(a²/4 - b²) est bien une des solutions de l'équation z2 = az - b2.

Deuxième solution

De même, si z = MQ on a IQ = IM - MQ = 1/2 a - z et IQ2 = (1/2 a - z)2 = IR2 = a²/4 - b².

Finalement 1/2 a - z = rac(a²/4 - b²) et z = a/2 - rac(a²/4 - b²) est l'autre solution.

Équation y2 = - ay + b2

Que si j'ai y2 = - ay + b2, et qu'y soit la quantité qu'il faut trouver, je fais le même triangle rectangle NLM, et de sa base MN j'ôte NP égale à NL, et le reste PM est y la racine cherchée. De façon que j'ai

z =- a/2 + rac(Δ)

Équation x4 = - ax2 + b2

et tout de même si j'avais x4 = - ax2 + b2. PM serait x2 et j'aurais

z =x = rac(rac(-a/2) + rac(Δ)) ; et ainsi des autres.

 

Équation y2 = ay - b2

Enfin si j'ai z2 = az - b2 : je fais NL égale à 1/2 a, et LM égale à b comme devant, puis, au lieu de joindre les points M N je tire MQR parallèle à LN. Et du centre N par L ayant décrit un cercle qui la coupe aux points Q et R, la ligne cherchée z est MQ, ou bien MR, car en ce cas elle s'exprime en deux façons, à savoir

z = a/2 + rac(a²/4 - b²) et z = a/2 - rac(a²/4 - b²).

 

Et si le cercle, qui ayant son centre au point N, passe par le point L, ne coupe ni ne touche la ligne droite MQR, il n'y a aucune racine en l'Équation, de façon qu'on peut assurer que la construction du problème proposé est impossible.

La Géométrie- Page 303

Au reste, ces mêmes racines se peuvent trouver par une infinité d'autres moyens, et j'ai seulement voulu mettre ceux-ci, comme fort simples, afin de faire voir qu'on peut construire tous les Problèmes de la Géométrie ordinaire sans faire autre chose que le peu qui est compris dans les quatre figures que j'ai expliquées.

Les coniques et nombre de leurs propriétés souvent subtiles étaient connues des Grecs. La« vraie méthode » de Descartes remplace la géométrie métrique par une équation du second degré et permet aux mathématiques de faire un progrès décisif.

Ce que je ne crois pas que les Anciens aient remarqué ; car autrement ils n'eussent pas pris la peine d'en écrire tant de gros livres où le seul ordre de leurs propositions nous fait connaître qu'ils n'ont point eu la vraie méthode pour les trouver toutes, mais qu'ils ont seulement ramassé celles qu'ils ont rencontrées.

La Géométrie- Extrait page 304
 

édition
1637

Victor
Cousin

Adam et
Tannery

« La Géométrie » - Livre premier

297

313

369

L'équation du second degré

302

318

374

Tables

Table I

539

511

Descartes
Philosophe et Mathématicien

La Géométrie : figures interactives

Les Éléments d'Euclide

Faire de l'histoire
… avec GéoPlan

Sommaire - Livre Premier

1. La Géométrie - Introduction
2. La Géométrie de la règle et du compas
3. Le théorème de Thalès
4. La racine carrée
5. L'équation du second degré

Le Problème de Pappus
Note sur le Problème de Pappus

La Géométrie d'après l'édition de 1637 :

Scan (du domaine public) : The geometry of Rene Descartes de David Eugene Smith et Marcia L. Latham- 1925 - Réédition Dover - New York, 1954.

« Descartes et les Mathématiques »

Accueil : http://debart.pagesperso-orange.fr

Suggestions, remarques, problèmes : me contacter.

Téléchargement

doc Télécharger geometrie_descartes.doc : ce document au format « .doc »

pdf Télécharger geometrie_descartes.pdf : ce document au format « .pdf » d'Adobe Acrobat

Moteur de recherche - Liens - Rétroliens
Logo Google  

Le café pédagogique : Il y a quelques années, nous vous avions recommandé le site de P. Debart.
Depuis, il a bien évolué : nous vous incitons à aller explorer le travail relatif à Descartes.
La lecture des textes mathématiques du célèbre philosophe y est accompagnée de figures interactives du meilleur effet.

Le mathouriste

MATHS-ROMETUS : Maths et liens
DESCARTES ET LES MATHEMATIQUES, de Patrice DEBART, présente, à travers Descartes, la géométrie plane, la géométrie dans l'espace et l'histoire des maths.

M@ths et tiques

Savants et histoire des sciences

Racine carrée et géométrie

La preuve cartésienne de la quadrature du cercle

Lamadesmaths : Site de l'équipe de mathématiques du Lycée Franco Péruvien de Lima

Philosophie des maths

Annuaire des cours gratuits

it : ItalienBibliografia Latina - Il linguaggio della nuova scienza
       Il latino come lingua di elezione e comunicazione
      Wikipédia, La geometria

pt : PortugaisHistória da Matemática na Sala de Aula
        Descartes e a equação do 2º grau

09:46 Publié dans Réné Descartes | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Parallélogrammes en seconde

Parallélogrammes en seconde

Source : http://www.maths.ac-aix-marseille.fr/debart/geoplan/paral...

 Propriétés

  Voir : parallélogrammes au collège

  g2w Télécharger la figure GéoPlan parallelogramme.g2w

 1. Thalès et parallélogramme

Thalès et parallélogrammeABCD est un parallélogramme.

M est un point sur la droite (DC) tel que vect(DM) = x vec(DC).

M’ est le point de la droite (BC) tel que vec(BM') = 1/x vec(BC).

Montrer que les points A, M et M’ sont alignés.

g2w Télécharger la figure GéoPlan parall_1.g2w
Sommaire
Faire de la géométrie dynamique


 4. Translation, orthocentre et alignement

Translation et alignementABCD est un rectangle. M un point du plan.

C’ est le projeté orthogonal de C sur (AM),
D’ est le projeté orthogonal de D sur (BM),
M’ est le projeté orthogonal de M sur (AB).
Les, droites (CC’) et (DD’) se coupent en I.

Montrer que les points M, M’ et I sont alignés.

Indications

Dans la translation de vecteur vect(CB) :
- la droite (MM’) est globalement invariante,
- (CC’) a pour image la hauteur (BB’), issue de B, du triangle MAB,
- (DD’) a pour image la hauteur (AA’), issue de A, du triangle MAB.
Ces trois hauteurs sont concourantes en H, orthocentre de MAB.

L'image réciproque de H est I, point de concours des trois droites (CC’), (DD’) et (MM’).
Les points M, M’, H et I sont alignés.

  g2w Télécharger la figure GéoPlan rect_tra.g2w

 5. Trisection d'un angle droit !

Trisection d'un angle droitConstruction à la règle au compas.

E et F partagent un segment [AB], de longueur 3, en trois unités.
Le point O complète le triangle équilatéral EFO.
C et D sont les deux autres sommets du rectangle ABCD de centre O.

Montrer que les droites (CA) et (CF) sont les trisectrices de l'angle DCB.

AB = BC = 3 et BC = AD = rac(3).
Vérifier que tan(DCA) et tan(FCB) sont égaux à rac(3)/3.

g2w Télécharger la figure GéoPlan trisect.g2w
Trisection : grands problèmes de la géométrie grecque


 6. Parallélogramme et bissectrice

 

Sommaire

1. Thalès et parallélogramme
2. Projections orthogonales
3. D'un parallélogramme à l'autre
4. Translation et alignement
5. Trisection d'un angle droit !
6. Parallélogramme et bissectrice
7. Parallélogramme avec contraintes
Construire un parallélogramme dont deux sommets sont situés sur deux droites
8. Translation

Collège : parallélogrammes
  Théorème de Varignon
    Parallélogramme inscrit

Point aligné sur une diagonale : parallélogramme de Pappus

1S : Barycentres et parallélogrammes

Page no 64, réalisée le 22/2/2004, mise à jour le 28/10/2009

Retrouver un triangle à partir de droites remarquables

Les droites remarquables du triangle

GéoPlan
Constructions géométriques

Problèmes de construction au collège

GéoPlan
en seconde

Faire de lagéométrie dynamique

2. Projections orthogonales

 

 

Projections orthogonales

 

ABCD est un parallélogramme.
I, J, K, L sont les projections orthogonales des sommets sur les diagonales.

Montrer que IJKL est un parallélogramme.

g2w Télécharger la figure GéoPlan parall_2.g2w

Sommaire
Faire de la géométrie dynamique

3. D'un parallélogramme à l'autre

D'un parallélogramme à l'autre

Les points P, Q, R et S sont les points d'intersection des droites perpendiculaires aux diagonales issues des sommets.
Montrer que PQRS est un parallélogramme.

Lorsque ABCD est un rectangle, montrer que PQRS est alors un losange.

g2w Télécharger la figure GéoPlan parall_3.g2w

Parallélogramme et bissectriceRésoudre par une méthode géométrique, dans R,
l'équation 2 |x - 1| - |x - 4| = 0.

AMEC est un parallélogramme. Une droite (d) passant par A coupe les segments [MC] et [CE] respectivement en I et B, et intercepte la droite (ME) en J.

Sachant que AI = 2 et IB = 1, calculer la longueur BJ.

Comme (AM) est parallèle à (BC), les triangles IAM et IBC sont semblables et de rapport de similitude 1/2. Donc, BC = 1/2 AM = 1/2 CE et B est le milieu de [EC].
Dans le triangle JAM, EB = 1/2 AM, la droite (BE) parallèle à (AM) est la droite des milieux : B est le milieu de [AJ] et E le milieu de [MJ].

On admettra que les droites (MJ) et (MC) sont perpendiculaires.
Si F est le milieu de [MA], (BF), joignant les milieux des côtés du parallélogramme AMEC, est parallèle à (ME) ; donc perpendiculaire à (MC).
(MC) diagonale du parallélogramme est une médiane du triangle MBF, elle est aussi une médiatrice, d'où MBF admettant (MC) comme axe de symétrie est un triangle isocèle et MB = MF = 1/2 MA

Comme MA = 2 MB, M est sur (c), cercle d'Apollonius de diamètre [IJ], ensemble des points M tels que ma/mb = 2. Si M est distinct de I et J, les droites (MI) et (MJ) sont les bissectrices intérieure et extérieure de l'angle AMB.

Sur la droite (d) choisissons le repère (O, B) d'origine O milieu de [IJ]. On a alors les abscisses B(1) et A(4).
Un point M de la droite d'abscisse x est tel que MB = |x - 1| et MA = |x - 4|.

L'intersection du cercle (c) et de la droite (d) est l'ensemble des points de la droite vérifiant ma/mb = 2. C'est l'ensemble des points {I, J} dont les abscisses vérifient l'équation 2 |x - 1| - |x - 4| = 0, soit x = 2 ou x = −2. D'où les points d'abscisses I(2) et J(-2).

g2w Télécharger la figure GéoPlan para_bissect.g2w

7. Parallélogramme avec contraintes

Parallélogramme avec contraintes - RechercheConstruire un parallélogramme dont deux sommets sont situés sur deux droites

On donne deux points A, B distincts et deux droites (d1), (d2) sécantes, et distinctes de (AB).

Existe-t-il un point C sur (d2) et un point D sur (d1) tel que le quadrilatère ABCD soit un parallélogramme ?

Analyse

Placer un point D variable sur (d1) et construire le quatrième point C du parallélogramme ABCD.
Déplacer le point D jusqu'à ce que C soit sur la droite (d2).

Parallélogramme avec contraintes - solutionSolution

La trace du lieu du point C permet de réaliser que ce point est situé sur une droite parallèle à (d1).

Il suffit donc de tracer la droite (d’), image de (d1) par la translation de vecteur vect(AB). Les droites (d2) et (d’) sont sécantes en C.

Le point D, image de C par la translation réciproque de vecteur vect(BA), est situé sur (d1)
et vect(BA) = vect(CD) : le parallélogramme ABCD est la solution du problème.

 

g2w Télécharger la figure GéoPlan para_sur_2_droites.g2w

Sommaire
Faire de la géométrie dynamique

8. Translation

Définition : dire que le point M’ est l'image du point M par la translation qui transforme A en B signifie que le quadrilatère ABM’M est un parallélogramme.

Les segments [AM’] et [BM] ont même milieu.

Si M est sur la droite (AB), ABM’M est un parallélogramme aplati.

Construire l'image d'un segment par une translation

'image d'une droite par une translationApplication : construire l'image d'un segment [MN] par la translation qui transforme A en B.

On construit les points M’ et N’ tels que ABM’M et ABN’N soient deux parallélogrammes.
Pour cela, tracer les milieux I de [BM] et J de [BN].
M’ et N’ sont les symétriques de A par rapport à I et J.

Construire l'image d'une droite par une translation

Placer deux points M et N sur une droite (d). Construire les points M’ et N’ images des points M et N par la translation qui transforme A en B.

La droite (M’N’) est l'image de (d) par la translation.

Ces deux droites sont parallèles.

Indication

I et J sont les centres des parallélogrammes ABM’M et ABN’N.

(IJ), droite des milieux de AM’N’, est parallèle à (M’N’).
(IJ), droite des milieux de BMN, est parallèle à (MN).

Les droites (MN) et (M’N’) parallèles à (IJ) sont parallèles entre elles.

g2w Télécharger la figure GéoPlan trans_droite.g2w

Faire de lagéométrie en seconde

GéoPlan
Cercle - Angle inscrit

Construction au compas

Démonstrations géométriques dePythagore

Théorème de Thalès

Exercices
de-ci, de-là

Sommaire

1. Thalès et parallélogramme
2. Projections orthogonales
3. D'un parallélogramme à l'autre
4. Translation et alignement
5. Trisection d'un angle droit !
6. Parallélogramme et bissectrice
7. Parallélogramme avec contraintes
    Construire un parallélogramme dont deux sommets sont situés sur deux droites
8. Translation

g2w Figures interactives : visualisation de ces exemples sur PC avec Internet Explorer et la version ActiveX de GéoPlan

Téléchargement

doc Télécharger parallelogramme_seconde.doc : ce document au format « .doc »

pdf Télécharger parallelogramme_seconde.pdf : ce document au format « .pdf » d'Adobe Acrobat

Faire de la géométrie dynamique

Accueil : http://www.maths.ac-aix-marseille.fr/debart

Suggestions, remarques, problèmes : me contacter.

09:44 Publié dans Parallélogrammes, Seconde | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Calculs d'aires par découpage

Calculs d'aires par découpage

Classe de cinquième

Source : http://www.maths.ac-aix-marseille.fr/debart/college/aire_...

 

 1. Aire du parallélogramme

 6. Aire d'une Couronne

 

 Extrait du programme de géométrie de 6e (2004)

 Extrait du programme de géométrie de 5e (2009)

 

Sommaire

1. Aire du parallélogramme
2. Aire du trapèze
3. Aire du triangle
4. Aire d'un pentagone convexe
5. Aire d'un pentagone régulier
6. Couronne

Extraits des programmes de géométrie de 6e et 5e

Les paragraphes sur les lunules ont été déplacés dans la page calcul d'aire en seconde

Les exercices sur le triangle ont été déplacés dans la page : aires et triangles

Les exercices sur les quadrilatères ont été déplacés dans la page : aires du parallélogramme et du trapèze

Calculs d'aires en cinquième

Démonstrations avec la méthode des aires :
      théorème de Thalès
      théorème de Pythagore

Aire d'un quadrilatère non convexe : prenons de la hauteur
Calcul de π dans le papyrus de Rhind : fractions égyptiennes

Calcul d'aire minimum : minimum-maximum
Analyse en option 1L-TL

Problèmes de partage
Multiplication de l'aire d'un triangle : triangles en seconde

Aires dans un rectangle : aire en seconde

Aire formée par deux segments circulaires

Aire de quadrilatère orthodiagonal et de cerf-volant

Page no 68, réalisée le 30/5/2004, modifiée le 20/11/2009

Index
Aires

Faire de lagéométrie
dynamique

Problèmes de construction
au collège

Triangle inscrit
dans un carré

Aire maximale

MIAM
Activités TICE
en cinquième

MIAM
Activités TICE
en quatrième

Les méthodes de découpages et recollement de figures pour des calculs d'aires peuvent être considérées comme des démonstrations mathématiques : le découpage et le recollement correspondent à l'application d'un déplacement ou d'un antidéplacement et ces deux types d'applications du plan dans le plan conservent les aires.
Avec les élèves, on peut considérer que l'on a démontré si l'on vérifie qu'il y a bien « recollement ».

Activités et outils pour la classe de cinquième - Réunion de Manosque

Aire du parallélogrammeClasse de cinquième

L'aire d'un parallélogramme a pour mesure le produit de sa base par sa hauteur.

Soit ABCD un parallélogramme, E et F les projections orthogonales de C et D sur (AB).

Le rectangle FECD a même aire que le parallélogramme, car les triangles rectangles ADF et BCE sont isométriques.

Aire(ABCD) = AB × DF = a × h où a = AB = CD et h = DF = CE.

g2w Télécharger la figure GéoPlan air_para.g2w

Voir : aire du parallélogramme

2. Aire du trapèze

Classe de 5ème

Aire du trapèzeLa surface d'un trapèze a pour mesure le produit de la moyenne des bases par sa hauteur :

b = AB, b’ = CD, h = HE : Aire(ABCD) = (b+b')/2 × h.

Soit ABCD un trapèze de grande base [AB], et de petite base [CD] parallèle à (AB).
I et J les milieux des côtés [BC] et [AD]. D'après la propriété de Thalès, IJ est égal à la moyenne des bases.
E et F les projections orthogonales de J et I sur (AB) ainsi que G et H les projections orthogonales de I et J sur (CD).

Le rectangle EFGH a même aire que le trapèze ABCD, car les triangles rectangles
IGC et IFB sont isométriques, de même que les triangles JHD et JEA.

g2w Télécharger la figure GéoPlan aire_trapeze.g2w

Voir : aire du trapèze

3. Aire du triangle

Aire du triangleClasse de 5e

L'aire d'un triangle a pour mesure le demi-produit d'un côté par la hauteur perpendiculaire à ce côté.

Le rectangle BCED a une aire double de celle du triangle ABC
Aire(ABC) = 1/2 Aire(BCED) = 1/2 BC × AH = 1/2 base × hauteur.

Au lycée, voir la formule de Héron d'Alexandrie dans l'article relations métriques du triangle

g2w Télécharger la figure GéoPlan aire_triangle1.g2w

Voir : aires et triangles

4.a. Transformation d'un polygone convexe en triangle

Transformation d'un quadrilatèreClasse de troisième

Exemple : transformation d'un quadrilatère ABCD en triangle AB’D avec la propriété du trapèze

Il est toujours possible de transformer un polygone convexe de n côtés (n > 3) en un polygone de
n − 1 côtés en procédant comme suit :
isolant quatre sommets consécutifs ABCD, on sait transformer le triangle ABC en AB’C où B’ est l'intersection du côté (CD) et de la parallèle à (AC) passant par B. Le polygone ayant pour côtés consécutifs AB’D a un côté de moins et l'aire est conservée par la propriété du trapèze.

g2w Télécharger la figure GéoPlan aire_quadrilatere.g2w

b. Aire d'un pentagone convexe (papillons)

Transformation du pentagone convexe ABCDE en triangle APQ en utilisant deux fois le théorème du papillon.

Aire d'un pentagoneSoit ABCDE un pentagone (convexe).
Les parallèles aux diagonales AC et AD coupent la droite (CD) en P et Q.

L'aire du pentagone est égale à l'aire du triangle APQ.

Indications : l'aire du pentagone est égale à la somme des aires des trois triangles ABC, ACD et ADE.

Solution : les triangles ABC et APC ont même base AC et la même hauteur, de longueur égale à la distance entre les droites (AC) et (PC) ; ils ont donc même aire.
De même, les triangles ADE et ADQ ont même aire.
L'aire du pentagone est alors égale à la somme des aires des trois triangles APC, ACD et ADQ : c'est l'aire du triangle APQ.

Remarque : Il a été enlevé du pentagone les triangles ABI et AEJ, que l'on a remplacés par les triangles CPI et DQJ d'aires équivalentes (théorème du papillon).

Technique GéoPlan : dans le logiciel il n'existe pas fonction permettant de calculer l'aire a d'un pentagone.
On peut la trouver en calculant a = a1 + a2 + a3, somme des aires des trois triangles ABC, ACD et ADE, ou utiliser l'aire du triangle APQ.

g2w Télécharger la figure GéoPlan aire_pentagone.g2w

5. Aire du pentagone régulier

Aire d'un pentagone régulierClasse de troisième

Dans le cas du pentagone régulier ABCDE, il existe un découpage en quatre pièces.

En déplaçant le triangle ABE en EDF, on obtient un trapèze BCDF d'aire équivalente à celle du pentagone.

Par symétrie par rapport au milieu I de [DF] on remplace le triangle CDI par GFI.

L'aire du pentagone est égale à l'aire du triangle BCG.

g2w Télécharger la figure GéoPlan aire_pentagone_regulier.g2w

Pentagone régulier :
    constructions exactes
    constructions approchées

Transformation du pentagone régulier en parallélogramme

Pentagone vers parallélogramme

M est le milieu de la diagonale [BD].

Le triangle BMN est isocèle (triangle d'or d'angles 36° et 72°).

À partir de ce puzzle de trois pièces, il est possible de reconstituer un parallélogramme.

g2w Télécharger la figure GéoPlan pentagone_vers_parallelogramme.g2w

 

Bibliographie : groupe « Jeux » de l'Association des Professeurs de Mathématiques - Comment se jouer de la Géométrie - 2009

Transformation du pentagone régulier en carré

Transformation du pentagone régulier en carré

Reprenons la figure ci-contre pour transformer le parallélogramme DEFK en carré.

En choisissant un point I sur le demi-cercle de diamètre [FE], nous pouvons découper le triangle FEI et le translater en FJL, avec un sommet en J, intersection de (EI) avec (CD). [FI] et [IL] sont les côtés d'un rectangle de même aire que celle du pentagone.

Côté du carré de même aire

Pour tracer un carré, nous utiliserons la méthode de la moyenne proportionnelle : l'aire du parallélogramme DEFK est égale au produit de base FE par la hauteur FH. Pour cette hauteur, rabattre le point H en Q sur (FE). La droite (FH) coupe le cercle de diamètre (QE) en U. Dans le triangle rectangle QEU, le carré de la hauteur FU issue de l'angle droit U est égal au produit des segments QF et FE découpés sur l'hypoténuse (Construction d'Euclide reprise par Descartes).

Le cercle de centre F passant par U coupe le cercle de diamètre [FE] en I. Le quadrilatère BEIR est translaté en BJLV. Le triangle EJD est translaté en FPK.

Les six pièces du pentagone permettent de reconstituer un carré.

Remarques : FH est aussi la distance de F à la droite (MN).
Le point C n'est pas sur la droite (EU), mais utiliser ce point est une erreur imperceptible.

g2w Télécharger la figure GéoPlan pentagone_vers_carre.g2w

Calcul d'aireClasses de 4e - 3e

Dans la figure ci-contre, on ne connaît pas les rayons r = OM et R = OA des cercles (c1) et (c2) de centre O. On sait seulement que la corde [AB] mesure a = 3 cm et qu'elle est tangente au cercle intérieur (c1).

On demande cependant de trouver l'aire s de la couronne circulaire comprise entre (c1) et (c2).

Indications : la tangente (AB) au cercle (c1) en M est perpendiculaire au rayon [OM].
Le triangle AMO est rectangle en M d'où la propriété de Pythagore AO2 = AM2 + MO2,
soit R2 = (1/2a)2 + r2 ou R2 - r2 = 1/4a2.
L'aire s de la couronne est la différence entre l'aire πR2 du grand cercle et πr2 celle du petit cercle.s = πR2 - πr2 = π(R2 - r2) = 1/4 a2, expression de l'aire de la couronne uniquement en fonction de a.

Cas particulier : Si AB est égal au diamètre du cercle (c1), r = 1/2 a, alors le triangle AMO est rectangle isocèle et R = r rac(2).
L'aire du cercle (c2) est double de celle de (c1), l'aire de la couronne πr2 est alors égale à l'aire du cercle intérieur.

Voir : Haha ou l'éclair de la compréhension mathématique - Martin Gardner - Pour la science - Belin - 1979
Lieux géométriques du milieu d'un segment

g2w Télécharger la figure GéoPlan couronne.g2w

Activité B2i

Domaine B2i

Item collège validable

Aire en 5ème ou en 4ème

Aire du parallélogramme
Aire du trapèze
Aire du triangle
Aire d'un pentagone convexe
Aire d'un pentagone régulier

1 – S'approprier un environnement informatique de travail.

1.1 – Je sais m'identifier sur un réseau ou un site et mettre fin à cette identification.

1.2 – Je sais accéder aux logiciels et aux documents disponibles à partir de mon espace de travail.

Couronne

2 – Adopter une attitude responsable pour les élèves venant en aide.

2.7 – Je mets mes compétences informatiques au service d'une production collective.

Contenu

Compétences exigibles

Commentaires

4.3 Aires : mesure, comparaison et calcul d'aires

  – Comparer des aires.
  – Déterminer l'aire d'une surface à partir d'un pavage simple.

  – Différencier périmètre et aire.

  – Connaître et utiliser la formule donnant l'aire d'un rectangle

Poursuivant le travail effectué à l'école élémentaire, les élèves sont confrontés à des problèmes dans lesquels il faut :
  – comparer des aires à l'aide de reports, de décompositions, de découpages et de recompositions, sans perte ni chevauchement ;
  – déterminer des aires à l'aide de quadrillage et d'encadrements.

Certaines activités proposées conduisent les élèves à comprendre notamment que leurs sens de variation ne sont pas toujours similaires.

Au cycle 3 de l'école élémentaire, les élèves ont calculé l'aire d'un rectangle dont l'un des côtés au moins était de dimension entière. En sixième, le résultat est généralisé au cas de rectangles dont les dimensions sont des décimaux.

 

  – Calculer l'aire d'un triangle rectangle.

  – Effectuer pour les aires des changements d'unités de mesure.

Des manipulations permettent aux élèves de comprendre le passage du rectangle au triangle rectangle. À partir de là, ils peuvent être confrontés au calcul d'aires de figures décomposables en rectangles et triangles rectangles.

Comme pour les longueurs, l'utilisation des équivalences entre diverses unités est préférée à celle systématique d'un tableau de conversion.

Contenus

Compétences

Exemples d'activités, commentaires

4.3 Aires

parallélogramme, triangle, disque.

  – Calculer l'aire d'un parallélogramme.

  – Calculer l'aire d'un triangle connaissant un côté et la hauteur associée.

 

  – Calculer l'aire d'un disque de rayon donné.

  – Calculer l'aire d'une surface plane ou celle d'un solide, par décomposition en surfaces dont les aires sont facilement calculables.

La formule de l'aire du parallélogramme est déduite de celle de l'aire du rectangle.

La formule de l'aire du triangle est déduite de celles de l'aire du parallélogramme, du triangle rectangle ou du rectangle.
Le fait que chaque médiane d'un triangle le partage en deux triangles de même aire est justifié (démontré en 2006 !).

Dans le cadre du socle, les élèves peuvent calculer ainsi l'aire d'un parallélogramme.
Les élèves peuvent calculer l'aire latérale d'un prisme droit ou d'un cylindre de révolution à partir du périmètre de leur base et de leur hauteur

Parallélogramme

Triangle
au collège

GéoPlan 5e
Calculs d'aires

GéoPlan
Le triangle équilatéral

GéoSpace 6e
Parallélépipède rectangle

GéoPlan 3e
accompagnement des programmes

Sommaire

1. Aire du parallélogramme
2. Aire du trapèze
3. Aire du triangle
4. Aire d'un pentagone
5. Aire du pentagone régulier
6. Couronne

Extraits des programmes de géométrie de 6e et 5e

g2w Figures interactives : visualisation de ces exemples sur PC avec Internet Explorer et la version ActiveX de GéoPlan

Téléchargement

doc Télécharger aire_college.doc : ce document au format « .doc »

pdf Télécharger aire_college.pdf : format « .pdf » d'Adobe Acrobat

Faire de la géométrie dynamique

Accueil : http://www.maths.ac-aix-marseille.fr/debart

Suggestions, remarques, problèmes : me contacter.

 

09:42 Publié dans 5ème, Calculs d'aires par découpage | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Olympiades académiques de mathématiques de première, session 2011

affiche olympiades

Olympiades académiques 
de mathématiques de première, session 2011


Présentation :

 

Les Olympiades académiques de mathématiques s’adressent depuis la session 2005 à tous les élèves volontaires des classes de premières générales et technologiques.

L’objectif est de stimuler chez les élèves l'initiative et le goût de la recherche en abordant des problèmes plus ouverts ou originaux et en soulignant le lien étroit entre les mathématiques et les autres sciences.

Il s’agit d’une épreuve d'une durée de quatre heures, comportant quatre exercices : deux d’entre eux sont choisis au niveau national, les deux autres le sont au niveau académique et peuvent être différents suivant la série d’origine des candidats.

Les connaissances nécessaires pour résoudre ces quatre exercices sont celles figurant dans les programmes du collège et de seconde et celles qui sont communes aux programmes d’analyse et de statistique-probabilités des différentes classes de première. Les calculatrices sont autorisées durant l’épreuve.

Par académie, il est dressé un ou plusieurs palmarès, par grande série de première ou regroupement de séries, à condition qu’il y ait suffisamment de candidats méritants issus de ces séries.

Pour l’édition 2011, deux prix sont destinés dans chaque académie à des établissements n’ayant pas de lauréat au palmarès : l’un de ceux inscrivant des élèves pour la première fois cette année sera distingué et également un établissement faisant preuve d’une participation exceptionnelle (par son ampleur, ou sa variété, ou son homogénéité, etc.).

Les meilleures copies sont transmises à la cellule nationale des Olympiades et font l'objet d'une sélection nationale destinée à proposer à une vingtaine d'élèves des bourses pour des universités d'été et à constituer un vivier d'élèves susceptibles d'être préparés puis présentés à des compétitions internationales.

La collaboration des chefs d’établissements et des professeurs de mathématiques est indispensable. Ce sont eux qui peuvent le mieux faire connaître l’existence de cette compétition, la présenter positivement et encourager leurs élèves à y participer. Dans le cadre d’un projet ou d’un atelier culturel scientifique déposé auprès de la DAAC en temps utiles, il est possible de réunir, plusieurs fois dans l’année, les élèves volontaires afin de les préparer au type de travail qui leur sera proposé.

Les enseignants qui souhaitent se lancer ou souhaitent des conseils peuvent contacter Julien Fernandez, professeur au lycée Jean Perrin de Marseille et membre de la cellule académique des Olympiades :

julien.fernandez@ac-aix-marseille.fr

 

Calendrier 2010/2011 :

  • Clôture des inscriptions le 10 février 2011.
  • Date de l’épreuve : mercredi 23 mars 2011 (en métropole de 8h à 12h).
  • Communication du palmarès académique : mi-mai 2011.
  • Cérémonie nationale de remise des prix : PARIS juin 2011.

Pour en savoir plus : 

Source : http://www.maths.ac-aix-marseille.fr/annales/olympiad.htm

09:40 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

22/01/2011

Planète Maths - CE1/CE2 - Calcul/Géométrie De Méthode d'apprentissage DVD Zone 2. Pal. 2 volumes . Paru le 22 avril 2004

Planète Maths - CE1/CE2 - Calcul/Géométrie

  • De Méthode d'apprentissage
  • DVD Zone 2. Pal. 2 volumes . Paru le 22 avril 2004
  • Expédié sous 4 à 8 jours

POUR COMMANDER

18:45 Publié dans CE1, CE2, DVD | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Basic Maths Basic Maths - Multiplying and Dividing Decimals DVD Zone 2

Basic MathsBasic Maths - Multiplying and Dividing Decimals

 DVD Zone 2  Autres 
Topics covered include: to multiply decimal numbers, to divide decimal numbers, to check the answer to a decimal division problem and to divide and round off to a specified place value.
POUR COMMANDER

18:43 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Basic Maths Basic Maths - Geometry Vol.1 DVD Zone 2 Autres Paru le 22 février 2010

 

Basic MathsBasic Maths - Geometry Vol.1



 

18:42 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Mastering Essential Math Skills: Pre-Algebra Concepts , Richard W. Fishe Mastering Essential Math Skills: Pre-Algebra Concepts Richard W. Fishe DVD Autres Paru le 9 juin 2009

Mastering Essential Math Skills: Pre-Algebra Concepts - Mastering Essential Math Skills: Pre-Algebra Concepts

Mastering Essential Math Skills: Pre-Algebra Concepts , Richard W. FisheMastering Essential Math Skills: Pre-Algebra Concepts

Richard W. FisheDVD  Autres  Paru le 9 juin 2009
POUR COMMANDER

18:39 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Planète Maths - 5ème - Algèbre De Méthode d'apprentissage DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004

Planète Maths - 5ème - Algèbre

  • De Méthode d'apprentissage
  • DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004
  • En Stock

POUR COMMANDER

18:37 Publié dans 5ème, DVD | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Planète Maths - Seconde - Algèbre/Géométrie De Méthode d'apprentissage DVD Zone 2. Pal. 2 volumes . Paru le 22 avril 2004

Planète Maths - Seconde - Algèbre/Géométrie

  • De Méthode d'apprentissage
  • DVD Zone 2. Pal. 2 volumes . Paru le 22 avril 2004
  • En Stock

POUR COMMANDER

18:36 Publié dans DVD, Seconde | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Planète Maths - 3ème - Géométrie De Méthode d'apprentissage DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004

  • Note des internautes: Note moyenne des internautes : 5/5  |  
  • Lire les avis des internautes (1)

POUR COMMANDER

18:35 Publié dans 3ème, Géométrie | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Planète Maths - 4ème - Géométrie De Méthode d'apprentissage DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004

Planète Maths - 4ème - Géométrie

  • De Méthode d'apprentissage
  • DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004
  • En Stock
  • POUR COMMANDER

 

18:33 Publié dans 4ème, DVD, Géométrie | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Planète Maths - 4ème - Algèbre De Méthode d'apprentissage DVD Zone 2. Pal. 4 volumes . Paru le 22 avril 2004

Planète Maths - 4ème - Algèbre

POUR COMMANDER

 

 

18:30 Publié dans 4ème, DVD | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Algèbre , Cours et exercices résolus Serge Lang Scolaire / Universitaire (broché). Paru en 09/2004 Livre

Algèbre

  • Note des internautes: Note moyenne des internautes : 5/5  |  
  • Lire les avis des internautes (1)

POUR COMMANDER

13:51 Publié dans Algèbre | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Algèbre 1ère année , Mathématiques, cours, exercices, solutions François Liret, Dominique Martinais Scolaire / Universitaire (broché). Paru en 06/2003 Livre

Algèbre 1ère année

  • Note des internautes: Note moyenne des internautes : 5/5  |  
  • Lire les avis des internautes (2)

POUR COMMANDER

13:48 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Mathématiques 3ème Collectif Scolaire / Universitaire (broché). Paru en 09/2008 Livre

Mathématiques 3ème

Mathématiques 3èmeCollectif

  • Scolaire / Universitaire (broché). Paru en 09/2008
  • Expédié sous 4 à 8 jours
    POUR COMMANDER

13:47 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Phare Mathematiques 3e - Livre Du Professeur - Edition 2008 R. Brault- broché. Paru en 09/2008 Livre

Phare Mathematiques 3e - Livre Du Professeur - Edition 2008R. Brault-

  • broché. Paru en 09/2008
  • Expédié sous 4 à 8 jours
    POUR COMMANDER

13:45 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook