Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

28/08/2017

Les bouliers - Machines à calculer #1 - Micmaths

Premier épisode d'une série de vidéos sur les machines à calculer.

09:48 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

10/08/2017

e (Euler's Number) - Numberphile

Free trial at The Great Courses Plus: http://ow.ly/tKWt306Gg7a Dr James Grime discusses "e" - the famed Euler's Number. More links & stuff in full description below ↓↓↓ A bit extra from this video: https://youtu.be/uawO3-tjP1c More James Grime videos from Numberphile: http://bit.ly/grimevideos Support us on Patreon: http://www.patreon.com/numberphile NUMBERPHILE Website: http://www.numberphile.com/ Numberphile on Facebook: http://www.facebook.com/numberphile Numberphile tweets: https://twitter.com/numberphile Subscribe: http://bit.ly/Numberphile_Sub Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): http://bit.ly/MSRINumberphile Videos by Brady Haran Brady's videos subreddit: http://www.reddit.com/r/BradyHaran/ Brady's latest videos across all channels: http://www.bradyharanblog.com/ Sign up for (occasional) emails: http://eepurl.com/YdjL9 Numberphile T-Shirts: https://teespring.com/stores/numberphile Other merchandise: https://store.dftba.com/collections/n...

20:15 Publié dans Euler | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

e to the pi i for dummies

Ajoutée le 24 déc. 2015
For this Christmas video the Mathologer sets out to explain Euler's identity e to the pi i = -1, the most beautiful identity in math to our clueless friend Homer Simpson. Very challenging to get this right since Homer knows close to no math! Here are a couple of other nice videos on Euler's identity that you may want to check out: https://youtu.be/Yi3bT-82O5s (one of our Math in the Simpsons videos) https://youtu.be/F_0yfvm0UoU (by 3Blue1Brown) And for those of you who enjoy some mathematical challenges here is your homework assignment on Euler's identity: 1. How much money does Homer have after Pi years if interest is compounded continuously? 2. How much money does Homer have after an imaginary Pi number of years? 3. As we've seen when you let m go to infinity the function (1+x/m)^m turns into the exponential function. In fact, it turns into the infinite series expansion of the exponential function that we used in our previous video. Can you explain why? 4. Can you explain the e to pi i paradox that we've captured in this video on Mathologer 2: https://youtu.be/Sx5_QGdFmq4. If you own Mathematica you can play with this Mathematica notebook that I put together for this video http://www.qedcat.com/misc/Mathologer... Thank you very much to Danil Dmitriev the official Mathologer translator for Russian for his subtitles. Merry Christmas!

20:13 Publié dans Pi | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook