Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

02/01/2010

La distribution des nombres premiers

 

La distribution des nombres premiers

Organisé par : Viviane Baladi (ENS)

Nous savons que l’ensemble des nombres premiers est infini, mais que peut-on dire de leur répartition ? Combien y a-t-il de premiers jusqu’à 100 ? ou 1000 ? ou 10^6 ? ou même 10^1000 ? Nous discuterons la recherche de bonnes approximations des réponses à ces questions au travers des travaux de Gauss, Riemann et d’autres, culminant dans la preuve en 1896 du "Théorème des Nombres Premiers".
Nous pourrons alors poser d’autres questions : ces bonnes approximations peuvent-elles être améliorées ? Et qu’en est-il des premiers qui apparaissent dans d’autres suites d’entiers, par exemple les valeurs des polynômes. Pouvons-nous trouver des valeurs consécutives de polynômes qui soient des premiers (comme n^2 + n + 41 pour n = 0, 1, 2...) ? Si oui, avec quelle fréquence ? On peut imaginer d’autres "motifs" de premiers : des carrés magiques premiers, des nombres de Fibonacci premiers...
On peut aussi penser à la "distribution locale des premiers" : quelle est la grandeur possible des écarts entre les premiers ? Autrement dit, étant donné un premier p, peut-on borner supérieurement le plus petit premier supérieur à p? Pouvons-nous dire quelle est la taille moyenne de ces écarts ? Qu’en est-il des "petits écarts" : il y a seulement deux premiers qui diffèrent de 1, mais combien y en a-t-il qui diffèrent de 2 ?
Pouvons-nous distinguer rapidement et facilement les nombres premiers des nombres composés ? Qu’en est-il de la factorisation des nombres en un produit de premiers ? (Cette question est importante pour la sécurité des transactions électroniques financières.)
Les trois séances de cours aborderont toutes ces questions et bien d’autres, et présenteront plusieurs avancées récentes passionnantes sur les nombres premiers.
Référence bibliographique :
Harold Davenport, Multiplicative Number Theory, 3e éd., Springer, N.Y. 2000.

Ressources en ligne

Organisateurs

Photo non disponible

Viviane Baladi (ENS)

 

En savoir plus sur le cycle...

Source : http://www.diffusion.ens.fr/index.php?res=cycles&idcy...