Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

04/04/2011

Lettres grecques en mathématiques financières

Lettres grecques en mathématiques financières

Source : http://fr.wikipedia.org/wiki/Lettres_grecques_en_math%C3%...

Livres de mathématiques financières

 

Les lettres grecques ou grecques ou grecs sont les instruments de base de la gestion financière des options. Elles découlent des principaux modèles d'évaluation d'option, notamment de celui de Black et Scholes.

Ces indicateurs calculent l'impact sur le prix de l'option d'une variation des paramètres qui le forment :

  • d_{1} = frac{1}{sigma sqrt{T}} left[ ln left( frac{S}{K} right) + left( r + frac{1}{2}sigma^2 right)T right]
  • d_{2} = d_{1} - sigma sqrt{T}

Sommaire

 [masquer]

Définitions[modifier]

En reprenant les notations expliquées dans le modèle de Black et Scholes et en notant P,! la prime de l'option, on a les dérivées suivantes.

Le delta[modifier]

delta= frac{partial P}{partial S}

δCall = N(d1)

δPut = δCall − 1 = N(d1) − 1

Le delta d'une option mesure la sensibilité de son prix à une variation donnée du cours du sous-jacent.

La prime d'un call est une fonction croissante du prix du sous-jacent, delta_{call} ge 0, alors que celle d'un put en est une fonction décroissante, delta_{put} le 0. En effet, plus le prix du sous-jacent est élevé, plus la probabilité que le call soit dans la monnaie est grande. Symétriquement, plus le prix du sous-jacent est bas, plus la probabilité que le put soit dans la monnaie est grande. Ainsi, lorsqu'une option a un delta égal (en valeur absolue) à ou proche de 0,5, on dit qu'elle est à la monnaie.

En outre, delta_{call} le 1 et delta_{put} ge -1. On le comprend en prenant le cas extrême d'un call de prix d'exercice nul, sur un sous-jacent qui ne peut pas avoir un prix négatif. La prime de cette option sera toujours égale au prix du sous-jacent : P_{call},! = S,!. Sa dérivée par rapport au prix du sous-jacent sera donc égale à 1.

Un raisonnement symétrique permet de comprendre pourquoi le delta d'un put est supérieur à -1.

Le delta d'un portefeuille d'options est la somme des deltas de chacune des options qui le composent.

Le gamma[modifier]

article principal : gamma

gamma_{Call} = gamma_{Put} = frac{partial ^2 P}{partial S ^2}=frac{N'(d_{1})}{Ssigmasqrt{T}}

Le gamma représente la convexité du prix d'une option en fonction du cours du sous-jacent. Il indique si le prix de l'option a tendance à évoluer plus ou moins vite que le prix du sous-jacent. Par analogie, on peut comparer le delta à la vitesse et le gamma à l'accélération.

Une autre lecture du gamma est le sens d'évolution du delta en fonction du prix du sous-jacent. Un gamma positif indique que prix du sous-jacent et delta évoluent dans le même sens, alors qu'un gamma négatif montre le contraire.

Comme gamma_{call} ge 0 et gamma_{put} ge 0, on dit qu'un acheteur de call ou de put sera long de gamma, ou que son portefeuille sera gamma positif, et qu'un vendeur sera court (short) de gamma, ou gamma négatif. Toutes choses égales par ailleurs, le gamma est maximum lorsque l'option est à la monnaie (i.e. lorsque son delta est égal à 0.5). Un portefeuille comportant des positions acheteuses (dites longues) et vendeuses (dites courtes) d'options à différents prix d'exercice (sur un même sous-jacent) verra donc la valeur de son gamma évoluer, voire changer de signe, en fonction des évolutions du prix du sous-jacent.

Le gamma d'un portefeuille d'options est la somme des gammas de chacune des options qui le composent.
Le gamma est une fonction décroissante de la maturité.

NB: Pour le call, le delta est nécessairement positif (au pire nul) : une option d'achat vaut d'autant plus cher que le cours du sous-jacent est élevé. Par ailleurs, le delta du call est nécessairement compris entre 0 et 1.
Pour le put, le delta est nécessairement négatif (au pire nul) : une option de vente à un prix fixe vaut d'autant plus cher que le cours du sous-jascent est bas. Par un raisonnement symétrique au précédent on peut montrer que le delta du put est strictement compris entre -1 et 0.

Le thêta[modifier]

Le thêta est le coût (ou le gain) du temps qui passe sur un portefeuille d'options. Il évalue combien le passage du temps influe sur la valeur d'une option. Une position longue d'options (gamma positive) sera thêta negative. Le trader devra veiller tous les jours à payer son thêta journalier en profitant de sa position longue en gamma. On préfèrera donc être long d'une option qui soit suffisamment volatile, ainsi en rebalancant la position, on pourra payer le temps qui passe en tradant le gamma.
theta = -frac{partial P}{partial T}

Pour un call européen sur une action ne versant pas de dividendes :

theta_{call} = -frac{SN'(d_{1})sigma}{2sqrt{T}}-rKe^{-rT}N(d_{2})

Pour un put européen sur une action ne versant pas de dividendes :

theta_{put } = -frac{SN'(d_{1})sigma}{2sqrt{T}}+rKe^{-rT}N(-d_{2})

 

Le rhô[modifier]

Il est le taux de variation de la valeur de la prime en fonction du taux d'intérêt.

rho = frac{partial P}{partial R}

  • ρcall = KTe − rTN(d2)
  • ρput = − KTe − rTN( − d2)

Le véga[modifier]

mathcal{V}_{call} = mathcal{V}_{put} = frac{partial P}{partial sigma}=Ssqrt{T}N'(d_{1})

Le véga mesure de la sensibilité à la volatilité implicite (voir modèle Black-Scholes). Représenté par la lettre nu minuscule car le nom « véga » n'est pas lui-même un nom de lettre grecque.

Comme mathcal{V}_{call} ge 0 et mathcal{V}_{put} ge 0, on dit qu'un acheteur de call ou de put sera long de véga, ou que son portefeuille sera véga positif, et qu'un vendeur sera court (short) de véga, ou véga négatif.

Contrairement au gamma et au thêta, le véga est une fonction croissante de la maturité. Ainsi une augmentation parallèle de la volatilité aura-t-elle plus d'impact sur les options dont la date d'échéance est éloignée que sur celles dont elle est proche. Une position généralement appreciée des traders et des market makers est alors d'avoir une position globalement gamma positive (sensible aux grands mouvements de marché) et véga négative, qui consiste à acheter des options courtes et à vendre des options longues.

Utilisation[modifier]

Des indicateurs de risques[modifier]

Les grecques sont avant tout des indicateurs des risques pris par celui qui a acheté ou vendu des options. Elles détaillent ces risques par origine : le prix du sous-jacent, la volatilité implicite, le temps et le taux d'intérêt.

Elles vont donc permettre de gérer chacun de ces paramètres finement, que ce soit au niveau du trading, ou au niveau des services de contrôle des risques dans les structures où ils existent.

 

Des outils de gestion pour le trader[modifier]

La stratégie de gestion d'options la plus courante est appelée gestion en delta neutre. Elle consiste à éliminer à chaque instant le risque lié au prix du sous-jacent.

Prenons l'exemple d'un trader qui vend à l'instant t0 n calls identiques, de delta δ0. Le delta de son portefeuille est alors de n, times, delta_0. Voulant immuniser son portefeuille contre les variations de prix du sous-jacent, il va annuler ce delta. La solution la plus simple en général est alors d'acheter (car dans le cas d'un calldelta_{call} ge 0) une quantité n, times, delta_0 de sous-jacent. En effet, par définition, le delta du sous-jacent est égal à 1.

Seulement, au cours de la vie de cette option, son delta va évoluer, notamment parce que le prix du sous-jacent aura changé. À l'instant t1, le delta δ1 sera différent de δ0 et donc la couverture du portefeuille ne sera plus optimale : le trader devra ajuster celle-ci en rachetant ou en vendant un peu plus de sous-jacent.

Prendre en compte le gamma permet d'optimiser cette gestion. Lorsque le gamma est positif, le delta augmente quand le prix du sous-jacent monte. Situation confortable pour l'opérateur qui doit vendre du sous-jacent lors des hausses marché, et en racheter lors des baisses. Ces allers-retours sur le sous-jacent sont utilisés pour regagner le coût du passage du temps (on dit souvent : payer le thêta). En revanche, si le gamma est négatif, il doit mener les opérations inverses, et les allers-retours doivent perdre moins que ce que fait gagner le thêta.

En outre, plus le gamma est important, plus les interventions pour neutraliser le delta seront fréquentes, ce qui peut poser un problème dans un environnement où les coûts de transaction sont élevés. À l'inverse, si le gamma de l'option est nul, le trader peut conserver une position fixe tout au long de la durée de vie de l'option.

Une gestion en delta neutre peut être un moyen de parier sur la volatilité : le portefeuille étant théoriquement immunisé contre les variations de prix du sous-jacent, sa valeur va principalement évoluer en fonction de la volatilité implicite.

Voir aussi[modifier]

Liens externes[modifier]

  • les Grecques, Les Grecques expliquées sur warrant-invest.com

07:43 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Mathématiques financières sur Wikipedia

Mathématiques financières

Source : http://fr.wikipedia.org/wiki/Math%C3%A9matiques_financi%C...

Livres de mathématiques financières : 

 

Les mathématiques financières sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant lesmarchés financiers. Elles utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.

L'actualisation et l'utilisation des probabilités remontent à plusieurs siècles. Louis Bachelier, par sa thèse intitulée Théorie de la spéculation en 1900, est considéré comme le fondateur des mathématiques financières. La théorie moderne des marchés financiers remonte au MEDAF et à l'étude du problème d'évaluation des options dans les années 1950-1970.

Sommaire

 [masquer]

Nature aléatoire des marchés[modifier]

L'observation empirique du cours des actifs financiers montre que ceux-ci ne sont pas déterminés de façon certaine par leur histoire. En effet, les nombreuses opérations d'achat ou de vente ne sont pas prévisibles, font souvent intervenir des éléments n'appartenant pas à l'historique et modifient le cours de l'actif. Celui-ci est donc souvent représenté par un processus stochastiqueBenoit Mandelbrot a établi par des considérations statistiques qu'un modèle aléatoire ordinaire, par exemple gaussien, ne pouvait convenir. L'aléa reste cependant souvent modélisé par un mouvement brownien1, bien que des modèles plus élaborés (par exemple, le modèle de Bates) tiennent compte de la non-continuité des cours (présence de sauts dus à des chocs boursiers), ou de la non-symétrie des mouvements à la baisse et à la hausse.

Hypothèse de non arbitrage[modifier]

L'une des hypothèses fondamentales des modèles usuels est qu'il n'existe aucune stratégie financière permettant, pour un coût initial nul, d'acquérir une richesse certaine dans une date future. Cette hypothèse est appelée absence d'opportunités d'arbitrage. Elle est justifiée théoriquement par l'unicité des prix caractérisant un marché en concurrence pure et parfaite. Pratiquement, il existe des arbitrages qui disparaissent très rapidement du fait de l'existence d'arbitragistes, acteurs sur les marchés dont le rôle est de détecter ce type d'opportunités et d'en profiter. Ceux-ci créent alors une force qui tend à faire évoluer le prix de l'actif vers son prix de non-arbitrage.

Hypothèse de complétude des marchés[modifier]

Une autre hypothèse, beaucoup plus remise en question, est que tout flux à venir peut être répliqué exactement, et quel que soit l'état du monde, par un portefeuille d'autres actifs bien choisis. Les modèles ne comprenant pas les hypothèses de non arbitrage et de complétude des marchés sont dits modèles de marchés imparfaits.

Probabilité risque-neutre[modifier]

Une des conséquences des hypothèses de non arbitrage et de complétude des marchés est l'existence et l'unicité à équivalence près d'une mesure de probabilité dite probabilité martingale ou « probabilité risque-neutre » telle que le processus des prix actualisés des actifs ayant une source de risque commune est une martingale sous cette probabilité. Cette probabilité peut s'interpréter comme celle qui régirait le processus de prix des sous-jacents de ces actifs si l'espérance du taux de rendement de ceux-ci était le taux d'intérêt sans risque (d'où le terme risque-neutre: aucune prime n'est attribuée à la prise de risque).

Un processus stochastique est une martingale par rapport à un ensemble d'information si son espérance en date t conditionnelle à l'information disponible en date s < t est égale à la valeur du processus en date s, c'est-à-dire qu'un processus A(u) est une martingale si l'espérance conditionnelle de A(t) par rapport a la filtration F(s) est A(s) (i.e : mathbb{E}left[A_t|mathcal{F}_sright]=A_s).

Le problème d'évaluation des produits dérivés[modifier]

L'évaluation (on dit aussi pricing ou, à tort, « valorisation » qui signifie « augmenter la valeur ») des produits dérivés se ramène souvent au calcul du prix aujourd'hui d'un actif dont on ne connaît le prix qu'à une date future. Il se ramène donc au calcul d'une espérance conditionelle. Le modèle Black-Scholes est un exemple de solution analytique au problème d'évaluation des options d'achat (call) ou de vente (put) d'un actif sous jacent. Dans le cas d'un call, le problème s'écrit :

C(t) = E^Qleft(left.e^{-int_{t}^T r(s)ds}cdot(S_T - K)_+right| F_{t}right),

où St est le cours de l'actif, K est le prix d'exercice (ou Strike), r(s) est le taux d'intérêt instantané sans risque à la date s, t est la date « d'aujourd'hui », T est la maturité de l'option, c’est-à-dire la date à laquelle la décision d'exercice peut être prise.

La formule de Black et Scholes est un exemple de solution analytique à ce problème, sous des hypothèses restrictives sur la dynamique du sous-jacent. Voir aussi option.

Une obligation convertible peut s'évaluer comme un lot comprenant une option d'achat et une obligation classique.

Taux d'intérêt et dérivés de taux d'intérêt[modifier]

Les modèles simples supposent que le taux d'intérêt, c'est-à-dire le loyer de l'argent est constant. Cette hypothèse est centrale, car sous l'hypothèse d'absence d'opportunités d'arbitrage, un portefeuille non risqué rapporte ce taux d'intérêt. Or cette approximation n'est évidemment plus admissible dès que le cours de l'actif est essentiellement lié au niveau du taux d'intérêt (par exemple, le cours des obligations à taux variable, des swaptions...) ne peuvent être expliqués par un modèle à taux d'intérêt fixe.

On modélisera donc le taux d'intérêt par un processus aléatoire, auquel on demandera:

  • d'être au mieux compatible avec l'ensemble des courbes des taux observables
  • d'avoir des propriétés réalistes, comme de ne pas autoriser des taux négatifs, de rendre compte de l'effet de retour à la moyenne (mean reversion), ...

Les travaux de Vasicek ont permis d'exhiber un processus, dérivé du processus d'Ornstein-Uhlenbeck, cohérent, dont le loyer de l'argent ne dépend que du taux instantané (overnight) mais autorisant des taux négatifs. Des modèles plus élaborés (processus CIR, ...), faisant partie de la famille dite des modèles affines de taux court, ont permis de remédier à cette lacune, mais ne satisfont pas vraiment les spécialistes du fait de la difficulté d'interprétation financière des paramètres de diffusion et de leur incapacité à épouser exactement la courbe des taux zéro-coupon spot. HeathJarrow et Morton ont proposé une famille de modèles cohérents, dont la dynamique ne dépend que d'une fonction facilement interprétable (la volatilité du taux forward), et capables de rendre compte de n'importe quelle courbe de taux donnée. Des modèles dits de marché (BGM ou Libor Forward) connaissent un certain succès dans l'explication du prix des caps et des floors.

Toutefois, à la différence du marché des dérivés d'options où le modèle de Black et Scholes, plus ou moins arrangé pour le débarrasser de ses imperfections (volatilité constante, taux d'intérêt constant, ...) occupe une place prépondérante, aucun modèle de taux ne fait l'unanimité des spécialistes. Les taux d'intérêts sont en effet soumis à des pressions exogènes très importantes, qui rendent caduques très rapidement toutes les calibrations possibles. À l'heure actuelle, les publications et les recherches à ce sujet sont abondantes.

Dérivés de crédit[modifier]

Les dérivés de crédit sont des produits dérivés dont les flux dépendent d'événements de crédits intervenant sur un sous-jacent. Ces produits servent à prévenir la dégradation de la qualité de signature d'une contrepartie, c'est-à-dire son aptitude à assumer ses obligations de paiement ("CDS"'ou Credit default swap, "CLN" ou "Credit linked Notes"). Ils peuvent servir également à améliorer la qualité de signature d'une partie d'un panier d'actifs ("CDOs" ou "Collateralized debt obligations" ).

Dérivés climatiques[modifier]

Article détaillé : Dérivé climatique.

Les dérivés climatiques sont des produits financiers dont les flux dépendent d'un événement totalement indépendant de la structure des marchés financiers, lié à un événement climatique. Par exemple, un produit peut assurer à son détenteur une rente dans le cas où la température relevée en un lieu fixé par contrat dépasse ou reste en dessous d'une température de référence considérée comme normale. Ces produits — récents — ont pour vocation de permettre à des entreprises touristiques ou agricoles de se prémunir contre des aléas climatiques. Ils s'apparentent donc à des produits d'assurance, négociés directement sur les marchés financiers.

Notes et références[modifier]

Voir aussi[modifier]

Articles connexes[modifier]

Liens externes[modifier]

Bibliographie[modifier]

07:42 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Mathématiques financières Thierry Rolando, Jean-Claude Fink Etude (broché). Paru en 03/2006

Mathématiques financièresThierry RolandoJean-Claude Fink

07:40 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Mathématiques financières Edith Ginglinger, J.M. Hasquenoph Essai (poche). Paru en 01/2006

Mathématiques financières

Mathématiques financièresEdith GinglingerJ.M. Hasquenoph

07:39 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

14/12/2010

LIVRE Mathématiques financières Marie Boissonnade, Daniel Fredon

Mathématiques financièresMarie Boissonnade, Daniel Fredon

  • Scolaire / Universitaire (broché). Paru en 01/2007
  • En Stock- Expédié sous 24h

Pour être livré le jeudi 16 décembre, commandez avant demain 13h et choisissez la livraison express.

Livraison prévue pour Noël
22 fiches dont 8 études de cas pour comprendre et acquérir les connaissances de base en mathématiques financières. Les fiches présentent simultanément les principes fondamentaux du cours et des applications corrigées.
POUR COMMANDER

14:53 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

LIVRE Mathématiques financières Thierry Rolando, Jean-Claude Fink

Mathématiques financièresThierry Rolando, Jean-Claude Fink

  • Etude (broché). Paru en 03/2006
  • En Stock- Expédié sous 24h

Pour être livré le jeudi 16 décembre, commandez avant demain 13h et choisissez la livraison express.

Livraison prévue pour Noël

POUR COMMANDER

L'essentiel du cours, un QCM et ses réponses, des exercices d’application entièrement corrigés. Les auteurs montrent comment les concepts et les méthodes de base de l’analyse financière permettent de comprendre et de maîtriser les relations financières qu’une entreprise ou un particulier entretient avec le monde bancaire ou les marchés financiers. Les techniques abordées dans cet ouvrage trouvent toutes leurs applications et exemples dans le domaine de la gestion financière des entreprises et de la gestion du patrimoine
(calcul des taux effectifs de financement ; analyse des opérations de crédit-bail, de créditrevolving ; compréhension des principaux produits d’épargne : livret A, plan d’épargnelogement,assurance-vie, etc.). Avec de nouveaux exercices.

14:50 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

LIVRE Mathématiques financières Gérard Chaigneau, Claude Anne

Mathématiques financières

Mathématiques financièresGérard Chaigneau, Claude Anne

  • Etude (broché). Paru en 11/2010
  • Expédié sous 4 à 8 jours

Livraison non garantie pour Noël sur Fnac.com. 

POUR COMMANDER


14:48 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

20/11/2010

Mathématiques financières

Source : http://fr.wikipedia.org/wiki/Math%C3%A9matiques_financi%C...

Mathématiques financières

Les mathématiques financières sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant lesmarchés financiers. Elles utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.

L'actualisation et l'utilisation des probabilités remontent à plusieurs siècles. Toutefois, il est considéré que la théorie moderne des marchés financiers remonte au MEDAF et à l'étude du problème d'évaluation des options dans les années 1950-1970.

Sommaire

 [masquer]

Nature aléatoire des marchés [modifier]

L'observation empirique du cours des actifs financiers montre que ceux-ci ne sont pas déterminés de façon certaine par leur histoire. En effet, les nombreuses opérations d'achat ou de vente ne sont pas prévisibles, font souvent intervenir des éléments n'appartenant pas à l'historique et modifient le cours de l'actif. Celui-ci est donc souvent représenté par un processus chaotiqueBenoit Mandelbrot a établi par des considérations statistiques qu'un modèle aléatoire ordinaire, par exemple gaussien, ne pouvait convenir. L'aléa reste cependant souvent modélisé par un mouvement brownien1, bien que des modèles plus élaborés (par exemple, le modèle de Bates) tiennent compte de la non-continuité des cours (présence de sauts dus à des chocs boursiers), ou de la non-symétrie des mouvements à la baisse et à la hausse.

Hypothèse de non arbitrage [modifier]

L'une des hypothèses fondamentales des modèles usuels est qu'il n'existe aucune stratégie financière permettant, pour un coût initial nul, d'acquérir une richesse certaine dans une date future. Cette hypothèse est appelée absence d'opportunités d'arbitrage. Elle est justifiée théoriquement par l'unicité des prix caractérisant un marché en concurrence pure et parfaite. Pratiquement, il existe des arbitrages qui disparaissent très rapidement du fait de l'existence d'arbitragistes, acteurs sur les marchés dont le rôle est de détecter ce type d'opportunités et d'en profiter. Ceux-ci créent alors une force qui tend à faire évoluer le prix de l'actif vers son prix de non-arbitrage.

Hypothèse de complétude des marchés [modifier]

Une autre hypothèse, beaucoup plus remise en question, est que tout flux à venir peut être répliqué exactement, et quel que soit l'état du monde, par un portefeuille d'autres actifs bien choisis. Les modèles ne comprenant pas les hypothèses de non arbitrage et de complétude des marchés sont dits modèles de marchés imparfaits.

Probabilité risque-neutre [modifier]

Une des conséquences des hypothèses de non arbitrage et de complétude des marchés est l'existence et l'unicité à équivalence près d'une mesure de probabilité dite probabilité martingale ou « probabilité risque-neutre » telle que le processus des prix actualisés des actifs ayant une source de risque commune est une martingale sous cette probabilité. Cette probabilité peut s'interpréter comme celle qui régirait le processus de prix des sous-jacents de ces actifs si l'espérance du taux de rendement de ceux-ci était le taux d'intérêt sans risque (d'où le terme risque-neutre: aucune prime n'est attribuée à la prise de risque).

Un processus stochastique est une martingale par rapport à un ensemble d'information si son espérance en date t conditionnelle à l'information disponible en date s < t est égale à la valeur du processus en date s, c'est-à-dire qu'un processus A(u) est une martingale si l'espérance conditionnelle de A(t) par rapport a la filtration F(s) est A(s) (i.e : mathbb{E}left[A_t|mathcal{F}_sright]=A_s).

Le problème d'évaluation des produits dérivés [modifier]

L'évaluation (on dit aussi pricing ou, à tort, « valorisation » qui signifie « augmenter la valeur ») des produits dérivés se ramène souvent au calcul du prix aujourd'hui d'un actif dont on ne connaît le prix qu'à une date future. Il se ramène donc au calcul d'une espérance conditionelle. Le modèle Black-Scholes est un exemple de solution analytique au problème d'évaluation des options d'achat (call) ou de vente (put) d'un actif sous jacent. Dans le cas d'un call, le problème s'écrit :

C(t) = E^Qleft(left.e^{-int_{t}^T r(s)ds}cdot(S_T - K)_+right| F_{t}right),

où St est le cours de l'actif, K est le prix d'exercice (ou Strike), r(s) est le taux d'intérêt instantané sans risque à la date s, t est la date « d'aujourd'hui », T est la maturité de l'option, c’est-à-dire la date à laquelle la décision d'exercice peut être prise.

La formule de Black et Scholes est un exemple de solution analytique à ce problème, sous des hypothèses restrictives sur la dynamique du sous-jacent. Voir aussi option.

Une obligation convertible peut s'évaluer comme un lot comprenant une option d'achat et une obligation classique.

Taux d'intérêt et dérivés de taux d'intérêt [modifier]

Les modèles simples supposent que le taux d'intérêt, c'est-à-dire le loyer de l'argent est constant. Cette hypothèse est centrale, car sous l'hypothèse d'absence d'opportunités d'arbitrage, un portefeuille non risqué rapporte ce taux d'intérêt. Or cette approximation n'est évidemment plus admissible dès que le cours de l'actif est essentiellement lié au niveau du taux d'intérêt (par exemple, le cours des obligations à taux variable, des swaptions...) ne peuvent être expliqués par un modèle à taux d'intérêt fixe.

On modélisera donc le taux d'intérêt par un processus aléatoire, auquel on demandera:

  • d'être au mieux compatible avec l'ensemble des courbes des taux observables
  • d'avoir des propriétés réalistes, comme de ne pas autoriser des taux négatifs, de rendre compte de l'effet de retour à la moyenne (mean reversion), ...

Les travaux de Vasicek ont permis d'exhiber un processus, dérivé du processus d'Ornstein-Uhlenbeck, cohérent, dont le loyer de l'argent ne dépend que du taux instantané (overnight) mais autorisant des taux négatifs. Des modèles plus élaborés (processus CIR, ...), faisant partie de la famille dite des modèles affines de taux court, ont permis de remédier à cette lacune, mais ne satisfont pas vraiment les spécialistes du fait de la difficulté d'interprétation financière des paramètres de diffusion et de leur incapacité à épouser exactement la courbe des taux zéro-coupon spot. HeathJarrow et Morton ont proposé une famille de modèles cohérents, dont la dynamique ne dépend que d'une fonction facilement interprétable (la volatilité du taux forward), et capables de rendre compte de n'importe quelle courbe de taux donnée. Des modèles dits de marché (BGM ou Libor Forward) connaissent un certain succès dans l'explication du prix des caps et des floors.

Toutefois, à la différence du marché des dérivés d'options où le modèle de Black et Scholes, plus ou moins arrangé pour le débarrasser de ses imperfections (volatilité constante, taux d'intérêt constant, ...) occupe une place prépondérante, aucun modèle de taux ne fait l'unanimité des spécialistes. Les taux d'intérêts sont en effet soumis à des pressions exogènes très importantes, qui rendent caduques très rapidement toutes les calibrations possibles. À l'heure actuelle, les publications et les recherches à ce sujet sont abondantes.

Dérivés de crédit [modifier]

Les dérivés de crédit sont des produits dérivés dont les flux dépendent d'événements de crédits intervenant sur un sous-jacent. Ces produits servent à prévenir la dégradation de la qualité de signature d'une contrepartie, c'est-à-dire son aptitude à assumer ses obligations de paiement ("CDS"'ou Credit default swap, "CLN" ou "Credit linked Notes"). Ils peuvent servir également à améliorer la qualité de signature d'une partie d'un panier d'actifs ("CDOs" ou "Collateralized debt obligations" ).

Dérivés climatiques [modifier]

Article détaillé : Dérivé climatique.

Les dérivés climatiques sont des produits financiers dont les flux dépendent d'un événement totalement indépendant de la structure des marchés financiers, lié à un événement climatique. Par exemple, un produit peut assurer à son détenteur une rente dans le cas où la température relevée en un lieu fixé par contrat dépasse ou reste en dessous d'une température de référence considérée comme normale. Ces produits — récents — ont pour vocation de permettre à des entreprises touristiques ou agricoles de se prémunir contre des aléas climatiques. Ils s'apparentent donc à des produits d'assurance, négociés directement sur les marchés financiers.

Notes et références [modifier]

Voir aussi [modifier]

Articles connexes [modifier]

Liens externes [modifier]

Bibliographie [modifier]

17:33 Publié dans Mathématiques financières | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook