Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

13/01/2012

Programme de Hamilton

Programme de Hamilton

 

Source : http://fr.wikipedia.org/wiki/Programme_de_Hamilton

Le programme de Hamilton est une idée de « plan d'attaque », due à Richard Hamilton, de certains problèmes en topologie des variétés, notamment la célèbre conjecture de Poincaré.

Cet article tente de décrire les raisons d'être de ce programme sans entrer dans les détails.

Sommaire

  [masquer

Idée naïve[modifier]

Dans son article fondateur de 1982, Three-manifolds with positive Ricci curvatureRichard Hamilton introduit le flot de Ricci nommé d'après le mathématicien Gregorio Ricci-Curbastro1. Celui-ci est une équation aux dérivées partielles portant sur le tenseur métrique d'une variété riemannienne : on part d'une métrique g0, que l'on fait évoluer par :

 partial_t g_t = - 2 mathrm{Ric}(g_t),

où Ric est la courbure de Ricci de la métrique.

Il est facile de vérifier que les variétés à courbure constante, c'est-à-dire celles munies d'une métrique d'Einstein (en), sont des solitons ou des points fixes généralisés du flot : le flot de Ricci n'agit sur eux que par une dilatation.

On peut alors penser (et les premiers résultats d'Hamilton sur les variétés de dimension 3, ainsi que sur les courbes et surfaces confirment cette impression) que, de même que l'équation de la chaleur a tendance à homogénéiser une distribution de température, le flot de Ricci va « tendre » à homogénéiser la courbure de la variété.

Pour attaquer certains problèmes de topologie, Hamilton pense donc à prendre une variété, la munir d'une métrique riemannienne, laisser agir le flot et espérer récupérer une variété munie d'une métrique à courbure constante. Par exemple, si on part d'une variété simplement connexe, et qu'on récupère ainsi une variété simplement connexe de courbure constante strictement positive, on saura que la variété n'est autre que la sphère.

Nuançons ce propos : même dans la version la plus naïve de son programme, Richard Hamilton n'a jamais pensé obtenir aussi facilement des résultats de topologie. On peut fort bien imaginer que le flot s'arrête en un temps fini, parce que la courbure de la variété explose, soit globalement, soit localement. L'idée serait alors de comprendre et de classer de telles « singularités », et de réussir, à l'aide de découpages, à obtenir plusieurs variétés sur lesquelles on pourrait relancer le flot. L'espoir est qu'in fine, on arrive, après un nombre fini de découpages, à des morceaux à courbure constante. On obtiendrait ainsi, « à la limite », si tout se passe bien, des morceaux de variétés dont on pourrait connaître certaines propriétés topologiques. Notre variété de départ serait donc obtenue en « recollant » ces morceaux sympathiques, ce qui ouvre une voie d'accès aux célèbres conjectures de topologie, comme laconjecture de Thurston.

Existence en temps petit[modifier]

Comme toute ÉDP, l'équation du flot de Ricci ne vérifie pas a priori de principes d'existence et d'unicité qui soit comparable au théorème de Cauchy-Lipschitz pour les ÉDO. Le premier travail d'Hamilton a été de prouver que ce flot existe en temps petit.

Osons une comparaison. On sait que pour l'équation de la chaleur, il existe une unique solution en tout temps, et qu'elle est infiniment dérivable. Or, par certains côtés (la parabolicité), le flot de Ricci ressemble à l'équation de la chaleur. Les équations paraboliques possèdent une théorie générale développée, qui assure l'existence en temps petit de solutions. Cependant, l'équation du flot de Ricci n'est pas à proprement parler parabolique : elle n'est que « faiblement parabolique » : l'existence et l'unicité en temps petit ne sont donc pas garanties par un résultat général.

Un des premiers résultats de Hamilton, et de loin le plus fondamental dans l'étude du flot est donc de prouver ce résultat : il y parvint dans l'article déjà cité, en se basant sur le théorème d'inversion de Nash-Moser. Cependant, de Turck parvint au même résultat dans son article Deforming metrics in the direction of their Ricci tensors de 1983, paru dans le Journal of Differential Geometry, en se ramenant astucieusement à la théorie générale des équations strictement paraboliques.

Principes du maximum[modifier]

Un des outils analytiques principaux de l'étude du flot de Ricci est l'ensemble des principes du maximum. Ceux-ci permettent de contrôler certaines quantités géométriques (principalement mais pas uniquement les courbures) en fonction de leurs valeurs au départ du flot. Plus utilement qu'une longue glose, nous allons énoncer le plus simple d'entre eux : le principe du maximum scalaire.

Soit (M,g) une variété riemannienne et (gt)t une famille de métriques solutions du flot de Ricci sur l'intervalle [0,t0] et u : M times [0,t_0] to mathbb R une fonction infiniment dérivable vérifiant : partial_t u(cdot,t) + triangle_{g_t} u(cdot,t) geq 0. Alors, pour tout t in [0,t_0]u(cdot,t) geq min_{xin M} u(x,0).

Il existe des versions plus compliquées de ce principe : on peut en effet vouloir une hypothèse moins contraignante sur l'équation que vérifie u, ou vouloir l'appliquer à des tenseurs plutôt qu'à des fonctions scalaires, mais l'idée est là : avec une ÉDP sur u, on déduit un contrôle dans le temps à partir d'un contrôle à l'origine.

Ces résultats justifient que l'on cherche à déterminer quelles équations vérifient les grandeurs géométriques associées à une métrique, comme la courbure. C'est ainsi que de l'équation vérifiée par la courbure scalaire R :

partial_t R_{g_t} = - triangle_{g_t} R_{g_t} + 2 |textrm{Ric}_{g_t}|_{g_t}^2,

on peut déduire que sous le flot de Ricci, le minimum de la courbure scalaire croît.

Une version particulièrement forte de principe du maximum, le théorème de pincement de Hamilton et Ivey, valable uniquement en dimension trois, affirme que sous le flot de Ricci, lescourbures sectionnelles restent contrôlées par la courbure scalaire. Ce théorème est fondamental dans l'étude du flot de Ricci, et son absence en dimension supérieure est une des causes de la rareté des résultats.

Le programme aujourd'hui[modifier]

En trois articles retentissants (The entropy formula for the Ricci flow and its geometric applicationsRicci flow with surgery on three-manifolds et Finite extinction time for the solutions to the Ricci flow on certain three-manifolds), le mathématicien russe Grigori Perelman a exposé de nouvelles idées pour achever le programme de Hamilton. Perelman n'a soumis aucun de ces articles à une revue mathématique et ils sont disponibles sur le site web de diffusion de prépublications arXiv. Dans ces articles, il prétend classer toutes les singularités (les κ-solutions) et faire traverser icelles au flot. Il affirme qu'ils constituent une preuve de la conjecture de Thurston et donc de celle de Poincaré.

N'ayant été soumis à aucune revue, ces articles n'ont d'autre raison d'être lus que leur extraordinaire portée. Leur extrême difficulté et technicité fait que leur lecture est affaire d'années de travail à temps plein pour des mathématiciens renommés. Depuis le congrès international des mathématiciens de 2006, et même si l'ICM ne cite pas explicitement la conjecture de Poincaré dans sa présentation de Perelman, l'idée que le programme de Hamilton est bel et bien achevé est de plus en plus répandue dans la communauté mathématique.

En 2010, l'institut Clay a décerné officiellement à Perelman l'un des prix du millénaire pour sa démonstration de la conjecture de Poincaré, confirmant les considérations ci-dessus.

Notes et références[modifier]

  1.  George Szpiro, La conjecture de Poincaré, JC Lattès, 2007, p. 286.

19:16 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Les commentaires sont fermés.