Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

13/02/2011

Table des symboles mathématiques

Table des symboles mathématiques

Source : http://fr.wikipedia.org/wiki/Table_des_symboles_math%C3%A...

Cette page contient des caractères spéciaux.
Si certains caractères de cet article s’affichent mal (carrés vides, points d’interrogation, etc.), consultez la page d’aide Unicode.

En mathématiques, certains symboles sont fréquemment utilisés. Le tableau suivant représente une aide pour ceux qui ne sont pas habitués à ces symboles. Dans la table, sont précisés pour chaque symbole, le nom, la prononciation et la branche des mathématiques dans laquelle le symbole est principalement utilisé. En plus, la quatrième colonne contient une définition informelle et la dernière donne un court exemple apportant une explication sur l'utilisation du symbole.

Du fait de leur utilisation répandue, il existe un grand nombre de façons différentes de représenter certains symboles. Ce tableau ne saurait prétendre à l'exhaustivité.

Logique[modifier]

Autres branches[modifier]

Autres symboles mathématiques[modifier]

D'autres symboles sont définis par Unicode dans les plages suivantes:

Liens externes[modifier]

Sommaire

 [masquer]
Symbole
(TeX)
Symbole
(utf8)
NomSignificationExemples
Prononciation
Branche
Rightarrow, Implication A Rightarrow B, signifie « si A est vraie, alors B est vraie aussi ; si A est fausse alors on ne peut rien dire de la vérité de B ».
Parfois, on utilise rightarrow, au lieu de Rightarrow,
x = 2 Rightarrow x^2 = 4, est vraie, mais x^2 = 4 Rightarrow x = 2,est fausse (puisque x=−2 est aussi une solution).
« implique » ou « si... alors »
Logique
Leftrightarrow Équivalence logique A Leftrightarrow B signifie : « A est vraie quand B est vraie et A est fausse quand B est fausse ». x + 5 = y + 2 Leftrightarrow x + 3 = y,
« si et seulement si » ou « équivaut à »
Logique
wedge Conjonction logique A wedge B est vraie si et seulement si A et B sont vraies (donc fausse si A ou B ou A et B sont fausses) (n>2)wedge (n<4)Leftrightarrow (n=3), si n est un entier naturel
« et »
Logique
vee Disjonction logique Avee B est vraie quand A ou B (ou les deux) sont vraies et fausse quand les deux sont fausses. (nleqslant 2)vee (ngeqslant 4)Leftrightarrow nne 3, si n est un entier naturel
« ou »
Logique
neg ¬ Négation logique neg A est vraie quand A est fausse et fausse quand A est vraie neg (Awedge B)Leftrightarrow (neg A)vee (neg B)
xnotin SLeftrightarrow neg(xin S)
« non »
Logique
forall Quantificateur universel forall x, P(x) signifie : « P(x) est vraie pour tout x ». forall nin mathbb N, n^2geqslant n
« Quel que soit », « pour tout »
Logique
exists Quantificateur existentiel exists x, P(x) signifie : « il existe au moins un x tel que P(x) soit vraie » exists nin N, n+5=2times n (5 répond en effet à la question)
« il existe au moins un ... tel que »
Logique
Symbole
(TeX)
Symbole
(utf8)
NomSignificationExemples
Prononciation
Branche
! !,  ! Factorielle n! est le produit : 1 × 2 × ... × n. 6! = 1 × 2 × 3 × 4 × 5 × 6 = 720
Factorielle (de) n.
Combinatoire
sim ~ Relation d'équivalence
« ... est équivalent à ... »
Théorie des ensembles
Équivalence an ~ bn signifie que les suites an et bn sont équivalentes sin(1/n) ~ 1/n (lorsque n tend vers l'infini)
« ... est équivalent à ... »
Analyse
Distribution de probabilité X ~ D, signifie : « la variable aléatoire X a la distribution de probabilité D » X ~ N(0,1), la distribution ou loi normale
« ... a la distribution de probabilité ... »
Statistiques
=, = Égalité x = y signifie : « x et y désignent le même objet mathématique » 1 + 2 = 6 − 3
« est égal à »
toute branche
not= Non-égalité xnot=y signifie : « x et y ne désignent pas le même objet mathématique » 2 ≠ 3
« n'est pas égal à »,
« est différent de »
toute branche
equiv Congruence
« identique à »,
« congru à »
Arithmétique modulaire
propto Proportionnalité x propto y signifie : « x est proportionnel à y » si y=2x, alors y propto x
« est proportionnel à »
toute branche
: =
:Leftrightarrow
 :=
:⇔
Définition x: = y signifie : « x est défini comme étant un autre nom de y »
P :Leftrightarrow Q signifie : « P est définie comme étant logiquement équivalente à Q »
cosh (x) := {1over 2}left(e^x+e^{-x}right) (cosinus hyperbolique)
A oplus B :Leftrightarrow (Avee B)wedge neg (Awedge B)(OU exclusif)
« est défini comme »
le second est très peu utilisé
{,} { , } Ensemble en extension {a,b,c} désigne l'ensemble dont les éléments sont ab et c mathbb N = {0,1,2ldots } (ensemble des entiers naturels)
« L'ensemble des ... »
Théorie des ensembles
{ / }
{;}
{}
{ / }
{ ; }
{ }
Construction d'ensemble en compréhension {x / P(x)} désigne l'ensemble de tous les x qui vérifient P(x).
{x / P(x)} est le même ensemble que {x;P(x)} ou encore que {xP(x)}
{nin mathbb N / n^2<20} = {0, 1, 2, 3, 4}
« L'ensemble de tous les ... qui vérifient ... »
Théorie des ensembles
emptyset
{}

{}
Ensemble vide {} et emptyset désignent l'ensemble vide, l'ensemble qui n'a pas d'élément {nin mathbb N / 1<n^2<4} = emptyset
« Ensemble vide »
Théorie des ensembles
in
notin

Appartenance (ou non) à un ensemble ain S signifie : « a est un élément de l'ensemble S »
anotin S signifie : « a n'est pas élément de S »
2in mathbb N
{1over 2}notin mathbb N
« appartient à », « est élément de », « est dans ».
« n'appartient pas », « n'est pas élément de », « n'est pas dans »
Théorie des ensembles
subseteq
subset

Sous-ensemble Asubseteq B signifie : « tout élément de A est aussi un élément de B »
Asubset B a généralement la même signification que Asubseteq B. Signalons toutefois que pour certains, les canadiens français notamment, le symbole subset représente l'inclusion stricte subsetneq.
(Acap B) subseteq A
mathbb Qsubseteq mathbb R
« est un sous-ensemble (une partie) de ... », « est inclus dans... »
Théorie des ensembles
subsetneq Sous-ensemble strict, partie stricte Asubsetneq B signifie Asubseteq B et Ane B (ou Asubset B et Ane B quand subsetreprésente l'inclusion au sens large). mathbb Nsubsetneq mathbb Q
« est un sous-ensemble strict de ... », « est strictement inclus dans... »
Théorie des ensembles
supseteq
supset

Sur-ensemble Asupseteq B est une autre façon d'écrire Bsubseteq A.
Asupset B est une autre façon d'écrire Bsubset A
A supseteq (Acap B)
mathbb R supseteq mathbb Q
« est un sur-ensemble de ... », « contient... »
Théorie des ensembles
supsetneq Sur-ensemble strict Asupsetneq B a le même sens que Bsubsetneq A. mathbb Q supsetneq mathbb N
« est un sur-ensemble strict de ... », « contient strictement... »
Théorie des ensembles
cup Réunion Acup B désigne l'ensemble qui contient tous les éléments de A et de B et seulement ceux-là Asubseteq BLeftrightarrow Acup B=B
« Réunion de ... et de ... », « ... union ... »
Théorie des ensembles
cap Intersection Acap B désigne l'ensemble des éléments qui appartiennent à la fois à A et à B, c'est-à-dire les éléments qu'ont les ensembles A et B en commun {xin R / x^2=1}cap mathbb N = {1}
« Intersection de ... et de ... », « ... inter ... »
Théorie des ensembles
setminus Différence Asetminus B désigne l'ensemble de tous les éléments de A qui n'appartiennent pas à B {1,2,3,4}setminus {3,4,5,6} = {1,2}
« différence de ... et ... », « ... moins ... », « ... privé de ... »
Théorie des ensembles
()
[]
{}
( )
[ ]
{ }
Fonction application ; regroupement f(x) désigne l'image de l'élément x par la fonction f
Regroupement: les opérations placées à l'intérieur sont effectuées en premier
Si f est définie par f(x) = x2, alors f(3) = 32 = 9
(8/4)/2 = 2/2 = 1, mais 8/(4/2) = 8/2 = 4
« de »
toute branche
to Fonction f:Xto Y signifie que la fonction va de X dans Y, ou a pour ensemble de définition X et pour ensemble d'arrivée Y, ou a pour origine X et pour but Y. Considérons la fonction f:mathbb Zto mathbb Z définie par f(x) = x2
« de ... vers », « de ... dans », « de ... sur ... »
toute branche
mapsto Fonction x mapsto f(x) signifie que la variable x a pour image f(x) Au lieu d'écrire que f est définie par f(x) = x2, nous pouvons écrire " Soit la fonction fcolon x mapsto x^2 "
« est envoyé sur », « a pour image »
toute branche
mathbb N Ensemble des entiers naturels mathbb N représente {0, 1, 2, 3, ldots } {left|aright| / ain mathbb Z}=mathbb N
« N »
Nombre
mathbb N ^{*} * « N privé de zéro » mathbb N ^{*} = mathbb N setminus { 0 } = {1, 2, 3, ldots }
mathbb Z Ensemble des entiers relatifs mathbb Z représente {ldots -3, -2, -1, 0, 1, 2, 3 ldots } {a, -a / a in mathbb N}=mathbb Z
« Z »
Nombre
mathbb D Ensemble des nombres décimaux mathbb D représente left{{a over 10^n} / ain mathbb Z wedge nin mathbb Nright} 0,66 in mathbb D
{2 over 3} notin mathbb D
« D »
Nombre
mathbb Q Ensemble des nombres rationnels mathbb Q représente left{{pover q} / pin mathbb Z wedge qin mathbb Zwedge qne 0right} 3,14in mathbb Q
pi notin mathbb Q
« Q »
Nombre
mathbb Q ^{+} + mathbb Q ^{+} = { x in mathbb Q, x geqslant 0 }
R Ensemble des nombres réels R représente l'ensemble des limites des suites de Cauchy de mathbb Q pi in R
i notin R (i étant le nombre complexe tel que i2= − 1)
« R »
Nombre
mathbb C Ensemble des nombres complexes mathbb C représente {a+bcdot i / ain R wedge bin R} iin mathbb C
« C »
Nombre
<,
>,
<
>
Comparaison x < y signifie que x est strictement inférieur à y (ou x est inférieur à y).
x > y signifie que x est strictement supérieur à y (ou x est supérieur à y).
x<yLeftrightarrow y>x
« est strictement inférieur à », « est strictement supérieur à »
Relation d'ordre
leqslant
geqslant
≤ ou ⩽
≥ ou ⩾
Comparaison xleqslant y signifie que x est inférieur ou égal à y.
xgeqslant y signifie que x est supérieur ou égal à y.
xgeqslant 1Rightarrow x^2geqslant x
« est inférieur ou égal à » ; « est supérieur ou égal à »
Relation d'ordre
+, + Addition 4 + 6 = 10 signifie que si quatre est ajouté à six, alors la somme ou le résultat est égal à dix. 43 + 65 = 108
2 + 7 = 9
« plus »
Arithmétique
-, - Soustraction 9 - 4 = 5 signifie que si quatre est ôté (retranché) de neuf, alors le résultat est égal à 5. Le signe moins peut aussi être placé immédiatement à gauche d'un nombre pour le rendre négatif. Par exemple, 5 + (-3) = 2 signifie que si cinq et le nombre négatif moins trois, sont ajoutés, alors le résultat est égal à deux. 87 - 36 = 51
« moins »
Arithmétique
times × Multiplication 3 × 2 = 6 signifie que si trois est multiplié par deux, alors le produit est égal à six. 23 × 11 = 253
« fois »
Arithmétique
cdot /cdot ÷ Division 8 ÷ 4 = 2 signifie que huit divisé par quatre est égal à deux. 100 ÷ 4 = 25
« divisé par »
Arithmétique
{cdot over cdot} / fraction {9 over 4} représente la fraction neuf quarts. / peut être aussi utilisé pour représenter la division. {100 over 25} = 4
« sur »
Arithmétique Nombre
approx et simeq ≈ ou ≃ Approximation eapprox 2,718 à 10-3 près signifie qu'une valeur approchée de e à 10-3 près est 2,718. pi approx 3,1415926 à 10-7 près.
« approximativement égal à »
Nombre réel
sqrt{ } Racine carrée sqrt x représente le nombre réel positif dont le carré est égal à x. sqrt 4=2
sqrt {x^2}= left|xright|
« Racine carrée de ... »
Nombre
infty Infini +infty et -infty sont des éléments de la droite réelle achevéeinfty apparaît dans les calculs de limitesinfty est un point adjoint au plan complexe pour le rendre isomorphe à une sphère (sphère de Riemann) lim_{xto 0} {1over |x|}= infty
« Infini »
Nombre
pi, π π π est le rapport de la circonférence d'un cercle à son diamètre. A=pi cdot r^2 est l'aire d'un disque de rayon r
« Pi »
Géométrie euclidienne
varphi ϕ ou φ « nombre d'or » varphi = frac{1 + sqrt{5}}{2} simeq 1,618

 

e e « e » e est la base des logarithmes naturels. exp(1) = e ≈ 2,718
left|cdot right| | | Valeur absolue oumodule d'un nombre complexe ou cardinal d'un ensemble left|xright| désigne la valeur absolue de x (ou le module de x).
A | désigne le cardinal de l'ensemble A et représente, lorsque A est fini, le nombre d'éléments de A.
left|a+bcdot iright|=sqrt {a^2+b^2}
« Valeur absolue de... », « module de ... » ; « cardinal de ... »
Nombre ou Théorie des ensembles
sum Somme sum_{k=1}^n a_k se lit « somme de ak pour k de 1 à n », et représente a1 + a2 + ... + an sum_{k=1}^4 k^2
= 12 + 22 + 32 + 42
= 30
« Somme de ... pour ... de ... à ... »
Arithmétique
prod Produit prod_{k=1}^n a_k se lit « produit de ak pour k de 1 à n », et représente : a1·a2·...·an prod_{k=1}^4 (k+2)
=3times 4times 5times 6=360
« Produit de .. pour .. de .. à .. »
Arithmétique
int dx ∫,∬,∭,∮,∯ ou ∰ Intégrale int_a^b f(x) dx se lit « Intégrale de a à b de f de x dx », et représente l'aire algébrique du domaine délimité par la courbe représentative de f, l'axe des abscisses et les droites d'équation x = a et x = b
int f(x) dx se lit « intégrale de f de x dx, et représente une primitive de f
int_0^b x^2 dx = b^3/3
int x^2 dx = x^3/3+C (C désignant une constante)
« Intégrale (de .. à ..) de .. d-.. »
Analyse
leftlfloor x rightrfloor leftlfloor  rightrfloor Partie entière leftlfloor x rightrfloor se lit « Partie entière de x», et représente la partie entière inférieure de x leftlfloor 2,9 rightrfloor = 2

leftlfloor 2,3 rightrfloor = 2
« Partie entière de .. »
Nombre
leftlceil x rightrceil leftlceil  rightrceil Partie entière par excès leftlceil x rightrceil se lit « Partie entière par excès de x », et représente l'entier supérieur à x leftlceil 2,9 rightrceil = 3

leftlceil 2,3 rightrceil = 3
« Partie entière par excès de .. »
Nombre
PlageNom officiel du bloc
2000 – 206F Ponctuation générale
2070 – 209F Exposants et indices
20D0 – 20FF Signes combinatoires pour symboles
2150 – 218F Formes numérales
2190 – 21FF Flèches
2200 – 22FF Opérateurs mathématiques
2300 – 23FF Signes techniques divers (2336 – 237A = symboles APL)
25A0 – 25FF Formes géométriques
2600 – 26FF Symboles divers
2700 – 27BF Casseau
27C0 – 27EF Divers symboles mathématiques - A
27F0 – 27FF Supplément A de flèches
2900 – 297F Supplément B de flèches
2980 – 29FF Divers symboles mathématiques-B
2A00 – 2AFF Opérateurs mathématiques supplémentaires
2B00 – 2BFF Divers symboles et flèches
3000 – 303F Symboles et ponctuation Chinois, japonais et coréen (CJC)
10100 – 1013F Nombres égéens
1D400 – 1D7FF Symboles mathématiques alphanumériques
v · d · m

Ponctuation

Accolades ( { } ) · Parenthèses ( ( ) ) 
Chevrons ( < > ) · Crochets ( [ ] ) 
Guillemets ( « » ou “ ” ) 
Apostrophe ( ' ou ’ ) · Virgule ( , ) 
Barre oblique ( / ), inversée (  ) 
Espace (   ) · Point médian ( · ) 
Espace insécable (   ) 
Point ( . ) · Points de suspension ( … ) 
Point-virgule ( ; ) · Deux-points ( : ) 
Point d’exclamation ( ! ), d’interrogation ( ? ) 
Trait d’union ( - ) · Tiret ( – )

Ponctuation non standard

Point exclarrogatif ( ‽ )
Point d’ironie ( Point d’ironie, image miroir du point d'interrogation ) 

Diacritique

Accent aigu ( ´ ), double (  ̋  ) 
Accent grave ( ` ), double (  ̏  )
Accent circonflexe ( ^ ) · Hatchek ( ˇ ) 
Barre inscrite ( - ) · Brève ( ˘ ) 
Cédille ( ¸ ) · Macron ( ˉ ) · Ogonek ( ˛ ) 
Corne (  ̛  ) · Crochet en chef (  ̉ ) 
Point souscrit ( ִ ), suscrit ( ˙ ) 
Rond en chef ( ˚ ) · Tilde ( ~ ) 
Tréma ( ¨ ) · Umlaut ( ˝ )

Symbole typographique

Arrobase ( @ ) · Esperluette ( & ) 
Astérisque ( * ) · Astérisme ( ⁂ ) 
Barre verticale ( | ou ¦ ) 
Cœur floral (❦❧ ) 
Croisillon ( # ) · Numéro ( № ) 
Copyright ( © )   Marque ( ® )  
Degré ( ° ) · Celsius ( ℃ ) 
Prime : minute, seconde et tierce ( ′ ″ ‴ ) 
Obèle ( † et ‡ ) · Paragraphe ( § ) 
Par conséquent ( ∴ ) · Parce que ( ∵ ) 
Pied-de-mouche ( ¶ ) · Puce ( • )  
Tiret bas ( _ ) 

Symbole mathématique

Plus et moins ( + − ) · Plus ou moins ( ± ) 
Multiplié ( × ) · Divisé ( ÷ ) · Égal ( = ≠ ) 
Pour cent ( % ) · Pour mille ( ‰ )
Carré ( ² ) · Cube ( ³ ) · Micro ( µ )

Autres symboles

Symboles typographiques japonais
Symboles monétaires

08:59 | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook

Les commentaires sont fermés.