Expédié sous 4 à 8 jours
POUR COMMANDER
Kurt Gödel (1906-1978), mathématicien, logicien et philosophe, est incontestablement l’un des plus grands esprits de notre temps. Ses réponses aux questions radicales posées par le XXe siècle au langage, aux mathématiques et à la pensée rationnelle ont modifié de façon décisive l’assise du savoir contemporain :
Existe-t-il une langue qui permette d’isoler les phrases vraies dans tout monde possible ? Pouvons-nous ou prouver ou réfuter chacune des phrases que nous pouvons y énoncer ? Ou bien, dans une langue donnée, existe-t-il des phrases indécidables ? Plus largement, existe-t-il des phrases absolument indécidables, qui, dans aucune langue plausible, ne seront ni prouvées ni réfutées ?
Sommes-nous des machines ? Si nous pensons correctement, notre pensée doit pouvoir s’énoncer dans une langue univoque mais, en utilisant une langue définie, nous écrivons comme une machine. Existe-t-il des machines capables d’écrire tout ce que nous pouvons penser ?
Existe-t-il des objets qui ne sont ni dans l’espace ni dans le temps et que nous ne pouvons percevoir qu’avec nos esprits ? Les nombres sont-ils de tels objets ?
Les mathématiques apparaissent comme le modèle de l’activité rationnelle et l’arithmétique donne le modèle de la certitude mathématique. Mais pouvons-nous donner un fondement à l’arithmétique élémentaire ?
On présente ici les réponses de Gödel, en suivant son œuvre logique et philosophique, depuis sa démonstration de la complétude sémantique du calcul des prédicats (1929) à sa réflexion sur le continu chez Cantor (1947), en passant par son théorème dit d’incomplétude (1931) – théorème qui a rendu Gödel fameux au-delà de son domaine et influencé jusqu’au psychanalyste Jacques Lacan.
Pierre Cassou-Noguès, agrégé de mathématiques et docteur en philosophie, est chercheur au CNRS ; il a notamment publié Hilbert et De l’expérience mathématique.
Les commentaires sont fermés.