19/11/2010
Mordell Curve
| 
 | ||||||||||||||||||||||
|   An elliptic curve of the form   Uspensky and Heaslet (1939) give elementary solutions for  Solutions of the Mordell curve with  
 Values of  
 Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976. Cohen, H. " Conrad, M. Untitled. http://emmy.math.uni-sb.de/~simath/MORDELL/MORDELL+. Gebel, J. "Data on Mordell's Curve." http://tnt.math.metro-u.ac.jp/simath/MORDELL/. Gebel, J.; Pethő, A.; and Zimmer, H. G. "On Mordell's Equation." Compos. Math. 110, 335-367, 1998. Llorente, P. and Quer, J. "On the 3-Sylow Subgroup of the Class Group of Quadratic Fields." Math. Comput. 50, 321-333, 1988. Mestre, J.-F. "Rang de courbes elliptiques d'invariant donné." C.R. Acad. Sci. Paris 314, 919-922, 1992. Mestre, J.-F. "Rang de courbes elliptiques d'invariant nul." C.R. Acad. Sci. Paris 321, 1235-1236, 1995. Metsaenkylae, T. "Catalan's Conjecture: Another Old Diophantine Problem Solved." Bull. Amer. Math. Soc. S 0273-0979(03)00993-5, September 5, 2003. Mordell, L. J. Diophantine Equations. London: Academic Press, 1969. Myerson, G. "Re:  Quer, J. "Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12." C.R. Acad. Sci. Paris. Sér. 1 Math. 305, 215-218, 1987. Sierpiński, W. and Schinzel, A. Elementary Theory of Numbers, 2nd Eng. ed. Amsterdam, Netherlands: North-Holland, 1988. Sloane, N. J. A. Sequence A054504 in "The On-Line Encyclopedia of Integer Sequences." Szymiczek, K. "Re:  Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939. Wakulicz, A. "On the Equation  Womack, T. "Minimal-Known Positive and Negative   CITE THIS AS: Weisstein, Eric W. "Mordell Curve." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/MordellCurve.html | 

                                                    19:01 Publié dans Mordell Curve  | Lien permanent  | Commentaires (0)  |  |
 |  del.icio.us |
  del.icio.us |  |
 |  Digg |
 Digg |  Facebook
 Facebook 
                                                








































 for
 for  an integer. This equation has a finite number of solutions in integers for all nonzero
 an integer. This equation has a finite number of solutions in integers for all nonzero  . If
. If  is a solution, it therefore follows that
 is a solution, it therefore follows that  is as well.
 is as well. ,
,  , and 2, and then give
, and 2, and then give  ,
,  ,
,  , and 1 as exercises. Euler found that the only integer solutions to the particular case
, and 1 as exercises. Euler found that the only integer solutions to the particular case  (a special case of
 (a special case of  ,
,  , and
, and  . This can be proved using Skolem's method, using the
. This can be proved using Skolem's method, using the  , using 2-descent to show that the elliptic curve has rank 0, and so on. It is given as exercise 6b in Uspensky and Heaslet (1939, p. 413), and proofs published by Wakulicz (1957), Mordell (1969, p. 126), Sierpiński and Schinzel (1988, pp. 75-80), and Metsaenkylae (2003).
, using 2-descent to show that the elliptic curve has rank 0, and so on. It is given as exercise 6b in Uspensky and Heaslet (1939, p. 413), and proofs published by Wakulicz (1957), Mordell (1969, p. 126), Sierpiński and Schinzel (1988, pp. 75-80), and Metsaenkylae (2003). are summarized in the table below for small
 are summarized in the table below for small  .
.
 , 0), (0, 1), (2, 3)
, 0), (0, 1), (2, 3) , 1)
, 1) , 2)
, 2) , 0), (1, 3), (2, 4), (46, 312)
, 0), (1, 3), (2, 4), (46, 312) , 1), (0, 3), (3, 6), (6, 15), (40, 253)
, 1), (0, 3), (3, 6), (6, 15), (40, 253) , 3)
, 3) such that the Mordell curve has no integer solutions are given by 6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, ... (Sloane's
 such that the Mordell curve has no integer solutions are given by 6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, ... (Sloane's  ." 24 Nov 2003.
." 24 Nov 2003.  ." 24 Nov 2003.
." 24 Nov 2003.  ." 26 Nov 2003.
." 26 Nov 2003.  ." Colloq. Math. 5, 11-15, 1957.
." Colloq. Math. 5, 11-15, 1957. for Mordell Curves of Given Rank."
 for Mordell Curves of Given Rank."  Contact the MathWorld Team
Contact the MathWorld Team
Les commentaires sont fermés.