Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

03/01/2010

Méthodes mathématiques pour physiciens

Méthodes mathématiques pour physiciens

Descriptif du cours


Auteurs : Claude Aslangul
Domaine : Physique
Niveau : Licence Langue : Français

Description : Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université Pierre et Marie Currie.
Prérequis :
Mots clefs :
Commentaire :

Documents associés


Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Jan-2004 00:05
PDF (559.29ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Jan-2004 00:09
PDF (482.09ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Jan-2004 00:11
PDF (577.88ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Jan-2004 00:13
PDF (570.91ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Jan-2004 00:19
PDF (1.38Mo)
PS (1.16Mo)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 04-Mar-2004 22:14
PDF (744.39ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 21-Mar-2004 21:11
PDF (603.43ko)
PS (977.79ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 09-Mai-2004 00:18
PDF (740.02ko)
Par Claude Aslangul 
Cours de méthodes mathématiques et principalement d'analyse complexe dispensé en licence de physique à l'université P...
Licence Libre Cours Type 1 Date d'envoi : 15-Mai-2004 20:10
PDF (382.16ko)
PS (669.08ko)

Tables des matières


Introduction
Fonctions d'une variable complexe
Rappels des opérations élémentaires sur les nombres complexes
Fonction d'une variable complexe
Fonctions élémentaire
Intégration des fonctions d'une variable complexe
Préliminaires
Théorème de Cauchy
Généralisation au cas d'un domaine multiplement connexe
Formule de Cauchy
Dérivées d'ordre supérieur
Illustrations
Représentation des fonctions analytiques par des séries et théorème des résidus
Séries de Taylor
Séries de Laurent
Classification des singularités d'une fonction
Théorèmes de résidus
Prolongement analytique
Fonctions multiformes ; coupures ; notions de surface de Riemann
Applications élémentaires du théorème des résidus
Lemmes de Jordan
Calcul d'intégrales définies
Calcul d'intégrales de fonctions multiformes
Calcul de la somme de séries
Calcul d'intégrales impropres
Quelques applications de la théorie des fonctions d'une variable complexe
La fonction gamme d'Euler
Méthode du col
Développements asymptotiques
Un dernier exercice
Analyse de Fourier
Rappels sur les séries de Fourier
Transformation de Fourier
Propriétés asymptotiques
Généralisation en dimension quelconque
Causalité et analycité
Relations de Kramers-Kronig
Transformation de Laplace
Présentation
Définition et formule d'inversion
Propriétés de la transformée de Laplace
Propriétés asymptotiques
Quelques applications de la transformée de Laplace
Éléments de théorie des probabilités
Notion de variable aléatoire. Notion de probabilité
Axiomes. Premières conséquences
Fonction de répartition
Variables aléatoires continues
Espérances mathématiques (moyennes)
Lois de distribution courantes
Fonctions caractéristiques
Lois-limites. Théorème centrale limite
Équations différentielles. Fonctions de Green
Généralités et définitions
Conditions initiales. Conditions aux limites
Équations différentielles linéaires à coefficients constants
Équations différentielles linéaires à coefficients variables
Équations différentielles et équations aux différences
Fonctions de Green

Source : http://www.librecours.org/cgi-bin/course?callback=info&am...