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A Lefschetz fixed point formula for singular arithmetic

schemes with smooth generic fibres

Shun Tang

Abstract. In this article, we consider singular equivariant arith-
metic schemes whose generic fibres are smooth. For such schemes, we
prove a relative fixed point formula of Lefschetz type in the context of
Arakelov geometry. This formula is an analog, in the arithmetic case,
of the Lefschetz formula proved by R. W. Thomason in [29]. In par-
ticular, our result implies a fixed point formula which was conjectured
by V. Maillot and D. Rössler in [23].
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1 Introduction

It is the aim of this article to prove a singular Lefschetz fixed point formula
for some schemes which admit the actions of a diagonalisable group scheme, in
the context of Arakelov geometry. We first roughly describe the history of the
study of such Lefschetz fixed point formulae and relative Lefschetz-Riemann-
Roch problems.
Let k be an algebraically closed field and let n be an integer which is prime
to the characteristic of k. A projective k−variety X which admits an auto-
morphism g of order n will be called an equivariant variety. An equivariant
coherent sheaf on X is a coherent sheaf F on X together with a homomor-
phism ϕ : g∗F → F . It is clear that this homomorphism induces a family of
endomorphisms Hi(ϕ) on cohomology spaces Hi(X, F ).
A classical Lefschetz fixed point formula is to give an expression of the alter-
nating sum of the traces of Hi(ϕ), as a sum of the contributions from the com-
ponents of the fixed point subvariety Xg. On the other hand, roughly speaking,
a Lefschetz-Riemann-Roch theorem is a commutative diagram in equivariant
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K−theory which can be regarded as a Grothendieck type generalization of the
Lefschetz fixed point formula. Indeed, when we choose the base variety in such
a commutative diagram to be a point, we will get the ordinary Lefschetz fixed
point formula. If X is nonsingular, P. Donovan has proved such a theorem in
[12] by using the results and some of the methods of the paper of A. Borel
and J. P. Serre on the Grothendieck-Riemann-Roch theorem (cf. [10]). In [1],
P. Baum, W. Fulton and G. Quart generalized Donovan’s theorem to singular
varieties, the key step of their proof heavily relies on an elegant method called
the deformation to the normal cone. Denote by G0(X, g) (resp. K0(X, g))
the Quillen’s algebraic K-group associated to the category of equivariant co-
herent sheaves (resp. vector bundles of finite rank) on X, then K0(Pt, g) is
isomorphic to the group ring Z[k] and G0(X, g) (resp. K0(X, g)) has a natural
K0(Pt, g)-module (resp. K0(Pt, g)-algebra) structure. Let f be an equivari-
antly projective morphism between two equivariant varieties X and Y , then
it is possible to define a push-forward morphism f∗ from G0(X, g) to G0(Y, g)
in a rather standard way. Let R be any flat K0(Pt, g)-algebra in which 1 − ζ
is invertible for each non-trivial n-th root of unity ζ in k. The main result of
Baum, Fulton and Quart reads: there exists a family of group homomorphisms
L. between K-groups making the following diagram

G0(X, g) L. //

f∗
²²

G0(Xg, g)⊗Z[k] R
fg∗

²²
G0(Y, g) L. // G0(Yg, g)⊗Z[k] R

commutative. If Z is a nonsingular equivariant variety such that there exists an
equivariant closed immersion from X to Z, then for every equivariant coherent
sheaf E on X the homomorphism L. is exactly given by the formula

L.(E) = λ−1
−1(N

∨
Z/Zg

) ·
∑

j

(−1)jTorj
OZ

(i∗E,OZg
)

where NZ/Zg
stands for the normal bundle of Zg in Z. We would like to indicate

that one can use the same method so called the deformation to the normal cone
to extend Baum, Fulton and Quart’s result to general scheme case where X
and Y are Noetherian, separated schemes endowed with projective actions of
the diagonalisable group scheme µn associated to Z/nZ. Here by a µn-action
on X we understand a morphism mX : µn × X → X which statisfies some
compatibility properties. Denote by pX the projection from µn ×X to X. For
a coherent OX -module E on X, a µn-action on E we mean an isomorphism
mE : p∗XE → m∗

XE which satisfies certain associativity properties. We refer
to [19] and [20, Section 2] for the group scheme action theory we are talking
about.
In [29], R. W. Thomason used another way to generalize Baum, Fulton and
Quart’s result to the scheme case, and he removed the condition of projectivity.
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The strategy Thomason followed was to use Quillen’s localization sequence for
higher equivariant K-groups to prove an algebraic concentration theorem. Let
D be a Noetherian ring, and let µn be the diagonalisable group scheme over
D associated to Z/nZ. Denote the ring K0(D, µn) ∼= K0(D)[T ]/(1− Tn) by
R(µn). We consider the ideal ρ in R(µn) which is the kernel of the canonical
morphism K0(D)[T ]/(1− Tn) → K0(D)[T ]/(Φn) where Φn stands for the n-th
cyclotomic polynomial, then the support of ρ is µn itself (cf. [29, Prop. 1.2]).
Let X be a µn-equivariant scheme over D, then G0(X, µn) (resp. K0(X, µn))
has a natural R(µn)-module (resp. R(µn)-algebra) structure. Denote by i the
inclusion from Xµn

to X. The algebraic concentration theorem reads: there
exists a natural group homomorphism i∗ from G0(Xµn

, µn)(ρ) to G0(X, µn)(ρ)

which is an isomorphism. Moreover, if X is regular, the inverse map of i∗
is given by λ−1

−1(N
∨
X/Xµn

) · i∗ where NX/Xµn
is the normal bundle of Xµn in

X. This concentration theorem can be used to prove a singular Lefschetz
fixed point formula which is an extension of Baum, Fulton and Quart’s result
in general scheme case. Thomason’s approach has nothing to do with the
construction of the deformation to the normal cone, and the localization he
used is slightly weaker than Baum, Fulton and Quart’s in the sense that the
complement of the ideal ρ in R(µn) is not the smallest algebra in which the
elements 1−T k (k = 1, . . . , n−1) are invertible. If one exactly chooses R to be
the complement of the ideal ρ in R(µn), then these two localizations are equal
to each other.
In [20], K. Köhler and D. Rössler generalized the regular case of Baum, Fulton
and Quart’s result to Arakelov geometry. To every regular µn-equivariant arith-
metic scheme X, they associate an equivariant arithmetic K0-group K̂0(X, µn)
which contains some smooth form class on Xµn

(C) as analytic datum. Such
an equivariant arithmetic K0-group has a ring structure so that it is also an
R(µn)-algebra. Let NX/Xµn

be the normal bundle with respect to the reg-
ular immersion Xµn ↪→ X which is endowed with a hermitian metric, then
the main theorem in [20] reads: the element λ−1(N

∨
X/Xµn

) is invertible in

K̂0(Xµn
, µn)⊗R(µn) R and we have the following commutative diagram

K̂0(X, µn)
ΛR(f)−1·τ //

f∗
²²

K̂0(Xµn , µn)⊗R(µn) R
fµn∗

²²

K̂0(D, µn)
Id // K̂0(D, µn)⊗R(µn) R

where ΛR(f) := λ−1(N
∨
X/Xµn

) · (1 + Rg(NX/Xµn
)) and τ stands for the re-

striction map. Here Rg(·) is the equivariant R-genus, the definition of the two
push-forward morphisms f∗ and fµn∗ involves an important analytic datum
which is so called the equivariant analytic torsion. The strategy Köhler and
Rössler followed to prove such an arithmetic Lefschetz-Riemann-Roch theorem
was to use the construction of the deformation to the normal cone to prove
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an analog of this theorem for equivariant closed immersions. After that, they
decompose the morphism f to a closed immersion h from X to some projec-
tive space Pr

D followed by a smooth morphism p from Pr
D to Spec(D). Then

the theorem in general situation follows from an argument of investigating the
behavior of the error term under the morphisms h and p.
Provided X. Ma’s extension of equivariant analytic torsion to higher equivariant
analytic torsion form, it was conjectured by Köhler and Rössler in [21] that an
analog of [20, Theorem 4.4] in relative setting holds. We have already proved
this conjecture in [27]. Our method is similar to Thomason’s, we first show
that there exists an arithmetic concentration theorem in Arakelov geometry
and then deduce from it the relative Lefschetz fixed point formula. The same
as Thomason’s approach, our method has nothing to do with the construction
of the deformation to the normal cone, but unfortunately it only works for
regular arithmetic schemes.
One may naturally asked that whether it is possible to construct a more general
arithmetic Ĝ0-theory and prove a relative Lefschetz fixed point formula for
singular arithmetic schemes which is entirely an analog of Thomason’s singular
Lefschetz formula in Arakelov geometry. The answer is Yes, and this is what we
have done in this article. To do this, one needs a Ĝ0-theoretic vanishing theorem
which can be viewed as an extension of Köhler and Rössler’s fixed point formula
for closed immersions to the singular case. The proof of such a vanishing
theorem occupies a lot of space in this article. Let X and Y be two singular
equivariant arithmetic schemes with smooth generic fibres, and let f : X → Y
be an equivariant morphism which is smooth on the complex numbers. Assume
that the µn-action on Y is trivial and f can be decomposed to be h ◦ i where i
is an equivariant closed immersion from X to some regular arithmetic scheme
Z and h : Z → Y is equivariant and smooth on the complex numbers. Let
η be an equivariant hermitian sheaf on X. Referring to Section 6.1 for the
explanations of various notations, we announce that our main theorem in this
article is the following equality which holds in Ĝ0(Y, µn, ∅)(ρ):

f∗(η) =fZ
µn∗(i

∗
µn

(λ−1
−1(NZ/Zµn

)) ·
∑

k

(−1)kTork
OZ

(i∗η,OZµn ))

+
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1

g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg
)

+
∫

Xg/Y

T̃d(Tfg, ω
X , ωZ

X)chg(η)Tdg(NZ/Zg
)Td−1

g (F ).

The structure of this article is as follows. In Section 2, we recall some
differential-geometric facts for the convenience of the reader. In Section 3, we
formulate and prove a vanishing theorem for equivariant closed immersions in
a purely analytic setting. In Section 4, we define the arithmtic G0-groups with
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respect to fixed wave front sets which are necessary for our later arguments. In
Section 5 and Section 6, we formulate and prove the arithmetic concentration
theorem and the relative Lefschetz fixed point formula for singular arithmetic
schemes.
Acknowledgements. The author wishes to thank his thesis advisor Damian
Rössler for providing such an interesting topic, also for his constant encourage-
ment and for many fruitful discussions between them. The author is greatful to
Xiaonan Ma, from whom he gets many meaningful comments and suggestions.

2 Differential-geometric preliminaries

2.1 Equivariant analytic torsion forms

In [7], J.-M. Bismut and K. Köhler extended the Ray-Singer analytic torsion
to the higher analytic torsion form T for a holomorphic submersion. The
purpose of making such an extension is that the differential equation on ddcT
gives a refinement of the Grothendieck-Riemann-Roch theorem. Later, in his
article [22], X. Ma generalized J.-M. Bismut and K. Köhler’s results to the
equivariant case. In this subsection, we shall briefly recall Ma’s construction of
the equivariant analytic torsion form. This construction is not very important
for understanding the rest of this article, but the equivariant analytic torsion
form itself will be used to define a reasonable push-forward morphism between
equivariant arithmetic G0-groups.
We first fix some notations and assumptions. Let f : M → B be a proper
holomorphic submersion of complex manifolds, and let TM , TB be the holo-
morphic tangent bundle on M , B. Denote by JTf the complex structure on the
real relative tangent bundle TRf , and assume that hTf is a hermitian metric on
Tf which induces a Riemannian metric gTf . Let THM be a vector subbundle
of TM such that TM = THM⊕Tf , the following definition of Kähler fibration
was given in [4, Def. 1.4].

Definition 2.1. The triple (f, hTf , THM) is said to define a Kähler fibration
if there exists a smooth real (1, 1)−form ω which satisfies the following three
conditions:
(i). ω is closed;
(ii). TH

R M and TRf are orthogonal with respect to ω;
(iii). if X, Y ∈ TRf , then ω(X, Y ) = 〈X, JTfY 〉gT f .

It was shown in [4, Thm. 1.5 and 1.7] that for a given Kähler fibration, the
form ω is unique up to addition of a form f∗η where η is a real, closed (1, 1)-
form on B. Moreover, for any real, closed (1, 1)-form ω on M such that the
bilinear map X, Y ∈ TRf 7→ ω(JTfX, Y ) ∈ R defines a Riemannian metric and
hence a hermitian product hTf on Tf , we can define a Kähler fibration whose
associated (1, 1)-form is ω. In particular, for a given f , a Kähler metric on M
defines a Kähler fibration if we choose THM to be the orthogonal complement
of Tf in TM and ω to be the Kähler form associated to this metric.
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We now introduce the Bismut superconnection of a Kähler fibration. Let (ξ, hξ)
be a hermitian complex vector bundle on X. Let ∇Tf , ∇ξ be the holomorphic
hermitian connections on (Tf, hTf ) and (ξ, hξ). Let ∇Λ(T∗(0,1)f) be the con-
nection induced by ∇Tf on Λ(T ∗(0,1)f). Then we may define a connection on
Λ(T ∗(0,1)f)⊗ ξ by setting

∇Λ(T∗(0,1)f)⊗ξ = ∇Λ(T∗(0,1)f) ⊗ 1 + 1⊗∇ξ.

Let E be the infinite-dimensional bundle on B whose fibre at each point b ∈ B
consists of the C∞ sections of Λ(T ∗(0,1)f)⊗ ξ |f−1b. This bundle E is a smooth
Z-graded bundle. We define a connection ∇E on E as follows. If U ∈ TRB,
let UH be the lift of U in TH

R M so that f∗UH = U . Then for every smooth
section s of E over B, we set

∇E
Us = ∇Λ(T∗(0,1)f)⊗ξ

UH s.

For b ∈ B, let ∂
Zb be the Dolbeault operator acting on Eb, and let ∂

Zb∗ be
its formal adjoint with respect to the canonical hermitian product on Eb (cf.
[22, 1.2]). Let C(TRf) be the Clifford algebra of (TRf, hTf ), then the bundle
Λ(T ∗(0,1)f) ⊗ ξ has a natural C(TRf)-Clifford module structure. Actually, if
U ∈ Tf , let U ′ ∈ T ∗(0,1)f correspond to U defined by U ′(·) = hTf (U, ·), then
for U, V ∈ Tf we set

c(U) =
√

2U ′∧, c(V ) = −
√

2iV

where i(·) is the contraction operator (cf. [9, Definition 1.6]). Moreover, if
U, V ∈ TRB, we set T (UH , V H) = −PTf [UH , V H ] where PTf stands for the
canonical projection from TM to Tf .

Definition 2.2. Let e1, . . . , e2m be a base of TRB, and let e1, . . . , e2m be the
dual base of T ∗RB. Then the element

c(T ) =
1
2

∑

1≤α,β≤2m

eα ∧ eβ⊗̂c(T (eH
α , eH

β ))

is a section of (f∗Λ(T ∗RB)⊗̂End(Λ(T ∗(0,1)f)⊗ ξ))odd.

Definition 2.3. For u > 0, the Bismut superconnection on E is the differential
operator

Bu = ∇E +
√

u(∂
Z

+ ∂
Z∗

)− 1
2
√

2u
c(T )

on f∗(Λ(T ∗RB))⊗̂(Λ(T ∗(0,1)f)⊗ ξ).

Definition 2.4. Let NV be the number operator on Λ(T ∗(0,1)f)⊗ξ and on E,
namely NV acts by multiplication by p on Λp(T ∗(0,1)f) ⊗ ξ. For U, V ∈ TRB,
set ωHH(U, V ) = ωM (UH , V H) where ωM is the closed form in the definition
of Kähler fibration. Furthermore, for u > 0, set Nu = NV + iωHH

u .
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We now turn to the equivariant case. Let G be a compact Lie group, we shall
assume that all complex manifolds, hermitian vector bundles and holomorphic
morphisms considered above are G−equivariant and all metrics are G-invariant.
We will additionally assume that the direct images Rkf∗ξ are all locally free
so that the G-equivariant coherent sheaf R·f∗ξ is locally free and hence a G-
equivariant vector bundle over B. [22, 1.2] gives a G-invariant hermitian metric
(the L2-metric) hR·f∗ξ on the vector bundle R·f∗ξ.
For g ∈ G, let Mg = {x ∈ M | g·x = x} and Bg = {b ∈ B | g·b = b} be the fixed
point submanifolds, then f induces a holomorphic submersion fg : Mg → Bg.
Let Φ be the homomorphism α 7→ (2iπ)−degα/2 of Λeven(T ∗RB) into itself. We
put

chg(R·f∗ξ, hR·f∗ξ) =
dimM−dimB∑

k=0

(−1)kchg(Rkf∗ξ, hRkf∗ξ)

and

ch′g(R
·f∗ξ, hR·f∗ξ) =

dimM−dimB∑

k=0

(−1)kkchg(Rkf∗ξ, hRkf∗ξ).

Definition 2.5. For s ∈ C with Re(s) > 1, let

ζ1(s) = − 1
Γ(s)

∫ 1

0

us−1(ΦTrs[gNuexp(−B2
u)]− ch′g(R

·f∗ξ, hR·f∗ξ))du

and similarly for s ∈ C with Re(s) < 1
2 , let

ζ2(s) = − 1
Γ(s)

∫ ∞

1

us−1(ΦTrs[gNuexp(−B2
u)]− ch′g(R

·f∗ξ, hR·f∗ξ))du.

X. Ma has proved that ζ1(s) extends to a holomorphic function of s ∈ C near
s = 0 and ζ2(s) is a holomorphic function of s.

Definition 2.6. The smooth form Tg(ωM , hξ) := ∂
∂s (ζ1+ζ2)(0) on Bg is called

the equivariant analytic torsion form.

Theorem 2.7. The form Tg(ωM , hξ) lies in
⊕

p≥0 Ap,p(Bg) and satisfies the
following differential equation

ddcTg(ωM , hξ) = chg(R·f∗ξ, hR·f∗ξ)−
∫

Mg/Bg

Tdg(Tf, hTf )chg(ξ, hξ).

Here Ap,p(Bg) stands for the space of smooth forms on Bg of type (p, p).

We define two secondary characteristic classes c̃hg and T̃dg which satisfy the
following differential equations

ddcc̃hg(R·f∗ξ, hR·f∗ξ, h′R
·f∗ξ) = chg(R·f∗ξ, hR·f∗ξ)− chg(R·f∗ξ, h′R

·f∗ξ)

and
ddcT̃dg(Tf, hTf , h′Tf ) = Tdg(Tf, hTf )− Tdg(Tf, h′Tf ),

then the anomaly formula can be formulated as follows.
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Theorem 2.8. (Anomaly formula) Let ω′ be the form associated to another
Kähler fibration for f : M → B. Let h′Tf be the metric on Tf in this new
fibration and let h′ξ be another metric on ξ. The following identity holds in
Ã(Bg) :=

⊕
p≥0(A

p,p(Bg)/(Im∂ + Im∂)):

Tg(ωM , hξ)− Tg(ω′M , h′ξ) =c̃hg(R·f∗ξ, hR·f∗ξ, h′R
·f∗ξ)

−
∫

Mg/Bg

[T̃dg(Tf, hTf , h′Tf )chg(ξ, hξ)

+ Tdg(Tf, h′Tf )c̃hg(ξ, hξ, h′ξ)].

In particular, the class of Tg(ωM , hξ) in Ã(Bg) only depends on (hTf , hξ).

2.2 Equivariant Bott-Chern singular currents

The Bott-Chern singular current was defined by J.-M. Bismut, H. Gillet and
C. Soulé in [5] in order to generalize the usual Bott-Chern secondary char-
acteristic class to the case where one considers the resolutions of hermitian
vector bundles associated to the closed immersions of complex manifolds. In
[2], J.-M. Bismut generalized this topic to the equivariant case. We shall recall
Bismut’s construction of the equivariant Bott-Chern singular current in this
subsection. Similar to the equivariant analytic torsion form, the construction
itself is not very important for understanding our later arguments, we just re-
call it for the convenience of the reader. Bismut’s construction was realized via
some current valued zeta function which involves the supertraces of Quillen’s
superconnections. This is similar to the non-equivariant case.
As before, let g be the automorphism corresponding to an element in a com-
pact Lie group G. Let i : Y → X be an equivariant closed immersion of
G-equivariant Kähler manifolds, and let η be an equivariant hermitian vector
bundle on Y . Assume that ξ. is a complex (of homological type) of equivariant
hermitian vector bundles on X which provides a resolution of i∗η. We denote
the differential of the complex ξ. by v. Note that ξ. is acyclic outside Y and
the homology sheaves of its restriction to Y are locally free and hence they are
all vector bundles. We write Hn = Hn(ξ. |Y ) and define a Z-graded bundle
H =

⊕
n Hn. For each y ∈ Y and u ∈ TXy, we denote by ∂uv(y) the derivative

of v at y in the direction u in any given holomorphic trivialization of ξ. near y.
Then the map ∂uv(y) acts on Hy as a chain map, and this action only depends
on the image z of u in Ny where N stands for the normal bundle of i(Y ) in X.
So we get a chain complex of holomorphic vector bundles (H, ∂zv).
Let π be the projection from the normal bundle N to Y , then we have a
canonical identification of Z-graded chain complexes

(π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η),
√−1iz).

Moreover, such an identification is an identification of G-bundles which induces
a family of canonical isomorphisms Hn

∼= ∧nN∨ ⊗ η. Another way to describe
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these canonical isomorphisms (up to an automorphism of N defined by multi-
plying a constant−√−1) is applying [13, Exp. VII, Lemma 2.4 and Proposition
2.5]. These two constructions coincide because they are both locally, on a suit-
able open covering {Uj}j∈J , determined by any complex morphism over the
identity map of η |Uj

from (ξ. |Uj
, v) to the minimal resolution of η |Uj

(e.g.
the Koszul resolution). The advantage of using the construction given in [13]
is that it remains valid for arithmetic varieties over any base instead of the
complex numbers. By finite dimensional Hodge theory, for each y ∈ Y , there
is a canonical isomorphism

Hy
∼= {f ∈ ξ.y | vf = 0, v∗f = 0}

where v∗ is the dual of v with respect to the metrics on ξ.. This means that H
can be regarded as a smooth Z-graded G-equivariant subbundle of ξ so that it
carries an induced G-invariant metric. On the other hand, we endow ∧N∨ ⊗ η
with the metric induced from N and η. J.-M. Bismut introduced the following
definition.

Definition 2.9. We say that the metrics on the complex of equivariant her-
mitian vector bundles ξ. satisfy Bismut assumption (A) if the identification
(π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η),

√−1iz) also identifies the metrics.

Proposition 2.10. There always exist G-invariant metrics on ξ. which satisfy
Bismut assumption (A) with respect to the equivariant hermitian vector bundles
N and η.

Proof. This is [2, Proposition 3.5].

From now on we always suppose that the metrics on a resolution satisfy Bismut
assumption (A). Let ∇ξ be the canonical hermitian holomorphic connection on
ξ., then for each u > 0, we may define a G-invariant superconnection

Cu := ∇ξ +
√

u(v + v∗)

on the Z2-graded vector bundle ξ. Moreover, let Φ be the map α ∈ ∧(T ∗RXg) →
(2πi)−degα/2α ∈ ∧(T ∗RXg) and denote

(Td−1
g )′(N) :=

∂

∂b
|b=0 (Tdg(b · Id− ΩN

2πi
)−1)

where ΩN is the curvature form associated to N . We formulate as follows the
construction of the equivariant singular current given in [2, Section VI].

Lemma 2.11. Let NH be the number operator on the complex ξ. i.e. it acts on
ξj as multiplication by j, then for s ∈ C and 0 < Re(s) < 1

2 , the current valued
zeta function

Zg(ξ.)(s) :=
1

Γ(s)

∫ ∞

0

us−1[ΦTrs(NHgexp(−C2
u)) + (Td−1

g )′(N)chg(η)δYg
]du



10 Shun Tang

is well-defined on Xg and it has a meromorphic continuation to the complex
plane which is holomorphic at s = 0.

Definition 2.12. The equivariant singular Bott-Chern current on Xg associ-
ated to the resolution ξ. is defined as

Tg(ξ.) :=
∂

∂s
|s=0 Zg(ξ.)(s).

Theorem 2.13. The current Tg(ξ.) is a sum of (p, p)-currents and it satisfies
the differential equation

ddcTg(ξ.) = ig∗chg(η)Td−1
g (N)−

∑

k

(−1)kchg(ξk).

Moreover, the wave front set of Tg(ξ.) is contained in N∨
g,R.

Finally, we introduce a theorem concerning the relationship of equivariant Bott-
Chern singular currents involved in a double complex. This theorem will be
used to show that our definition of a general embedding morphism in equivari-
ant arithmetic G0-theory is reasonable.

Theorem 2.14. Let

χ : 0 → ηn → · · · → η1 → η0 → 0

be an exact sequence of equivariant hermitian vector bundles on Y . Assume
that we have the following double complex consisting of resolutions of i∗χ such
that all rows are exact sequences.

0 // ξn,· //

²²

· · · // ξ1,· //

²²

ξ0,· //

²²

0

0 // i∗ηn
// · · · // i∗η1

// i∗η0
// 0.

For each k, we write εk for the exact sequence

0 → ξn,k → · · · → ξ1,k → ξ0,k → 0.

Then we have the following equality in Ũ(Xg) :=
⊕

p≥0(D
p,p(Xg)/(Im∂+Im∂))

n∑

j=0

(−1)jTg(ξj,·) = ig∗
c̃hg(χ)
Tdg(N)

−
∑

k

(−1)k c̃hg(εk).

Here Dp,p(Xg) stands for the space of currents on Xg of type (p, p).
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2.3 Bismut-Ma’s immersion formula

In this subsection, we shall introduce Bismut-Ma’s immersion formula which
reflects the behaviour of the equivariant analytic torsion forms of a Kähler
fibration under composition of an immersion and a submersion. By translating
to the equivariant arithmetic G0-theoretic language, such a formula can be used
to measure, in arithmetic G0-theory, the difference between a push-forward
morphism and the composition formed as an embedding morphism followed by
a push-forward morphism. Although Bismut-Ma’s immersion formula plays a
very important role in our arguments, we shall not introduce its proof since it
is rather long and technical.
Let i : Y → X be an equivariant closed immersion of G-equivariant Kähler
manifolds. Let S be a complex manifold which admits the trivial G-action,
and let f : Y → S, l : X → S be two equivariant holomorphic submersions
such that f = l ◦ i. Assume that η is an equivariant hermitian vector bundle
on Y and ξ. provides a resolution of i∗η on X whose metrics satisfy Bismut
assumption (A). Let ωY , ωX be the real, closed and G-invariant (1, 1)-forms on
Y , X which induce the Kähler fibrations with respect to f and l respectively.
We additionally assume that ωY is the pull-back of ωX so that the Kähler
metric on Y is induced by the Kähler metric on X. As before, denote by N
the normal bundle of i(Y ) in X. Consider the following exact sequence

N : 0 → Tf → T l |Y→ N → 0

where N is endowed with the quotient metric, we shall write T̃dg(Tf, T l |Y ) for
T̃dg(N ) the equivariant Bott-Chern secondary characteristic class associated
to N . It satisfies the following differential equation

ddcT̃dg(Tf, T l |Y ) = Tdg(Tf, hTf )Tdg(N)− Tdg(T l |Y , hTl).

For simplicity, we shall suppose that in the resolution ξ., ξj are all l−acyclic
and moreover η is f−acyclic. By an easy argument of long exact sequence, we
have the following exact sequence

Ξ : 0 → l∗(ξm) → l∗(ξm−1) → . . . → l∗(ξ0) → f∗η → 0.

By the semi-continuity theorem, all the elements in the exact sequence above
are vector bundles. In this case, we formulate the L2-metrics on direct images
precisely as follows. We just take f∗hη as an example. Note that the semi-
continuity theorem implies that the natural map

(R0f∗η)s → H0(Ys, η |Ys)

is an isomorphism for every point s ∈ S where Ys stands for the fibre over s.
We may endow H0(Ys, η |Ys

) with a L2-metric given by the formula

< u, v >L2 :=
1

(2π)ds

∫

Ys

hη(u, v)
ωY ds

ds!
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where ds is the complex dimension of the fibre Ys. It can be shown that
these metrics depend on s in a C∞ manner (cf. [9, p.278]) and hence define a
hermitian metric on f∗η. We shall denote it by f∗hη.
In order to understand the statement of Bismut-Ma’s immersion formula, we
still have to introduce an important concept defined by J.-M. Bismut, the
equivariant R-genus. Let W be a G-equivariant complex manifold, and let E
be an equivariant hermitian vector bundle on W . For ζ ∈ S1 and s > 1 consider
the zeta function

L(ζ, s) =
∞∑

k=1

ζk

ks

and its meromorphic continuation to the whole complex plane. Define the
formal power series in x

R̃(ζ, x) :=
∞∑

n=0

(
∂L

∂s
(ζ,−n) + L(ζ,−n)

n∑

j=1

1
2j

)
xn

n!
.

Definition 2.15. The Bismut equivariant R-genus of an equivariant hermitian
vector bundle E with E |Xg=

∑
ζ Eζ is defined as

Rg(E) :=
∑

ζ∈S1

(TrR̃(ζ,−ΩEζ

2πi
)− TrR̃(1/ζ,

ΩEζ

2πi
))

where ΩEζ is the curvature form associated to Eζ . Actually, the class of Rg(E)
in Ã(Xg) is independent of the metric and we just write Rg(E) for it. Further-
more, the class Rg(·) is additive.

Theorem 2.16. (Immersion formula) Let notations and assumptions be as
above. Then the equality

m∑

i=0

(−1)iTg(ωX , hξi)− Tg(ωY , hη) + c̃hg(Ξ, hL2
)

=
∫

Xg/S

Tdg(T l, hTl)Tg(ξ.) +
∫

Yg/S

T̃dg(Tf, T l |Y )
Tdg(N)

chg(η)

+
∫

Xg/S

Tdg(T l)Rg(T l)
m∑

i=0

(−1)ichg(ξi)−
∫

Yg/S

Tdg(Tf)Rg(Tf)chg(η)

holds in Ã(S).

Proof. This is the combination of [8, Theorem 0.1 and 0.2], the main theorems
in that paper.
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3 A vanishing theorem for equivariant closed immersions

3.1 The statement

By a projective manifold, we shall understand a compact analytic subspace of
some complex manifold Pn

C. It is well known that a projective manifold is the
complex analytic space X(C) associated to a smooth projective variety X over
C (cf. [17, Appendix B]). Let µn be the diagonalisable group variety over C
associated to Z/nZ. We say X is µn-equivariant if it admits a µn-projective
action, this means the associated projective manifold X(C) admits an action
by the group of complex n-th roots of unity. Denote by Xµn

the fixed point
subscheme of X, by GAGA principle, Xµn

(C) is equal to X(C)g where g is the
automorphism on X(C) corresponding to a fixed primitive n-th root of unity.
If no confusion arises, we shall not distinguish between X and X(C) as well as
Xµn and Xg. Since the classical arguments of locally free resolutions may not
be compatible with the equivariant setting, we summarize some crucial facts
we need as follows.
(i). Every equivariant coherent sheaf on an equivariantly projective scheme is
an equivariant quotient of an equivariant locally free coherent sheaf.
(ii). Every equivariant coherent sheaf on an equivariantly projective scheme
admits an equivariant locally free resolution. It is finite if the equivariant
scheme is regular.
(iii). An exact sequence of equivariant coherent sheaves on an equivariantly
projective scheme admits an exact sequence of equivariant locally free resolu-
tions.
(iv). Any two equivariant locally free resolutions of an equivariant coherent
sheaf on an equivariantly projective scheme can be dominated by a third one.
Now let i : Y → X be a µn-equivariant closed immersion of projective manifolds
with normal bundle N . Let S be a projective manifold which admits the trivial
µn-action and let h : X → S be an equivariant holomorphic submersion whose
restriction f : Y → S is an equivariant holomorphic submersion. According to
our assumptions, we may define a Kähler fibration with respect to h by choosing
a µn(C)-invariant Kähler form ωX on X. By restricting ωX to Y we obtain a
Kähler fibration with respect to f . The same thing goes to hg : Xg → S and
fg : Yg → S. Let η be an equivariant hermitian holomorphic vector bundle on
Y , assume that (ξ., v) is a complex of equivariant hermitian vector bundles on
X which provides a resolution of i∗η, whose metrics satisfy Bismut assumption
(A).
Write Ng for the 0-degree part of N |Yg which is isomorphic to the normal
bundle of ig(Yg) in Xg and denote by F the orthogonal complement of Ng.
According to [13, Exp. VII, Lemma 2.4 and Proposition 2.5] we know that
there exists a canonical isomorphism from the homology sheaf H(ξ. |Xg

) to
ig∗(∧·F∨⊗η |Yg

) which is equivariant. Then the restriction of (ξ., v) to Xg can
always split into a series of short exact sequences in the following way:

(∗) : 0 → Im → Ker → ig∗(∧·F∨ ⊗ η |Yg
) → 0
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and
(∗∗) : 0 → Ker → ξ. |Xg→ Im → 0.

Suppose that ∧·F∨ ⊗ η |Yg
and ξ. |Xg

are all acyclic (higher direct images
vanish). Then according to an easy argument of long exact sequence, these
short exact sequences (∗) and (∗∗) induce a series of short exact sequences of
direct images:

H(∗) : 0 → R0hg∗(Im) → R0hg∗(Ker) → R0fg∗(∧·F∨ ⊗ η |Yg ) → 0

and

H(∗∗) : 0 → R0hg∗(Ker) → R0hg∗(ξ. |Xg
) → R0hg∗(Im) → 0.

By semi-continuity theorem, all elements in the exact sequences above are
vector bundles. We endow R0hg∗(ξ. |Xg

) and R0fg∗(∧·F∨ ⊗ η |Yg
) with the

L2-metrics which are induced by the metrics on ξ., η and F . Here the normal
bundle N admits the quotient metric induced from the exact sequence

0 → Tf → Th |Y→ N → 0

and the bundle F admits the metric induced by the metric on N . Moreover, we
choose any metrics on R0hg∗(Im) and R0hg∗(Ker) so that H(∗) and H(∗∗) be-
come short exact sequences of equivariant hermitian vector bundles. Denote by
c̃hg(ξ., η) the alternating sum of the equivariant secondary Bott-Chern charac-
teristic classes of H(∗) and H(∗∗) such that it satisfies the following differential
equation

ddcc̃hg(ξ., η) =
∑

j

(−1)jchg(R0fg∗(∧jF
∨ ⊗ η |Yg

))

−
∑

j

(−1)jchg(R0hg∗(ξj |Xg )).

Now the difference

δ(i, η, ξ.) :=c̃hg(ξ., η)−
∑

k

(−1)kTg(ωYg , h∧
kF∨⊗η|Yg )

+
∑

k

(−1)kTg(ωXg , hξk|Xg )−
∫

Xg/S

Tg(ξ.)Td(Thg)

−
∫

Yg/S

Td(Tfg)Td−1
g (F )chg(η)R(Ng)

−
∫

Yg/S

chg(η)Td−1
g (N)T̃d(Tfg, Thg |Yg

)

makes sense and it is an element in
⊕

p≥0 Ap,p(S)/(Im∂ + Im∂). Here the
symbols Tg(·) in the summations stand for analytic torsion forms introduced
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in Section 2.1, the symbol Tg(ξ.) in the integral is the equivariant Bott-Chern
singular current introduced in Section 2.2.
The vanishing theorem for equivariant closed immersions can be formulated as
the following.

Theorem 3.1. Let i : Y → X be an equivariant closed immersion of pro-
jective manifolds, and let S be a projective manifold which admits the trivial
µn-action. Assume that we are given two equivariant holomorphic submersions
f : Y → S and h : X → S such that f = h ◦ i. Then X admits an equivariant
hermitian very ample invertible sheaf L relative to the morphism h, and for
any equivariant hermitian resolution 0 → ξm → · · · ξ1 → ξ0 → i∗η → 0 we
have

δ(i, η ⊗ i∗L⊗n
, ξ.⊗ L⊗n

) = 0 for n À 0.

Here the metrics on the resolution are supposed to satisfy Bismut assumption
(A).

3.2 Deformation to the normal cone

To prove the vanishing theorem for closed immersions, we use a geometric
construction called the deformation to the normal cone which allows us to
deform a resolution of hermitian vector bundle associated to a closed immersion
of projective manifolds to a simpler one. The δ-difference of this new simpler
resolution is much easier to compute.
Let i : Y ↪→ X be a closed immersion of projective manifolds with normal
bundle NX/Y . For a vector bundle E on X or Y , the notation P(E) will stand
for the projective space bundle Proj(Sym(E∨)).

Definition 3.2. The deformation to the normal cone W (i) of the immersion
i is the blowing up of X × P1 along Y × {∞}. We shall just write W for W (i)
if there is no confusion about the immersion.

There are too many geometric objects and morphisms appearing in the con-
struction of the deformation to the normal cone, we have to fix various notations
in a clear way. We denote by pX (resp. pY ) the projection X × P1 → X (resp.
Y × P1 → Y ) and by π the blow-down map W → X × P1. We also denote by
qX (resp. qY ) the projection X ×P1 → P1 (resp. Y ×P1 → P1) and by qW the
composition qX ◦ π. It is well known that the map qW is flat and for t ∈ P1,
we have

q−1
W (t) ∼=

{
X × {t}, if t 6= ∞,
P ∪ X̃, if t = ∞,

where X̃ is isomorphic to the blowing up of X along Y and P is isomorphic to
the projective completion of NX/Y i.e. the projective space bundle P(NX/Y ⊕
OY ). Denote the canonical projection from P(NX/Y ⊕OY ) to Y by πP , then
the morphism OY → NX/Y ⊕ OY induces a canonical section i∞ : Y ↪→
P(NX/Y ⊕ OY ) which is called the zero section embedding. Moreover, let
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j : Y ×P1 → W be the canonical closed immersion induced by i× Id, then the
component X̃ doesn’t meet j(Y × P1) and the intersection of j(Y × P1) and P
is exactly the image of Y under the section i∞.
The advantage of the construction of the deformation to the normal cone
is that we may control the rational equivalence class of the fibres q−1

W (t).
More precisely, in the language of line bundles, we have the isomorphisms
O(X) ∼= O(P + X̃) ∼= O(P )⊗O(X̃) which is an immediate consequence of the
isomorphism O(0) ∼= O(∞) on P1.
On P = P(NX/Y ⊕OY ), there exists a tautological exact sequence

0 → O(−1) → π∗P (NX/Y ⊕OY ) → Q → 0

where Q is the tautological quotient bundle. This exact sequence and the
inclusion OP → π∗P (NX/Y ⊕OY ) induce a section σ : OP → Q which vanishes
along the zero section i∞(Y ). By duality we get a morphism Q∨ → OP , and
this morphism induces the following exact sequence

0 → ∧nQ∨ → · · · → ∧2Q∨ → Q∨ → OP → i∞∗OY → 0

where n is the rank of Q. Note that i∞ is a section of πP i.e. πP ◦ i∞ = Id,
the projection formula implies the following definition.

Definition 3.3. For any vector bundle η on Y , the following complex of vector
bundles

0 → ∧nQ∨ ⊗ π∗P η → · · · → ∧2Q∨ ⊗ π∗P η → Q∨ ⊗ π∗P η → π∗P η → 0

provides a resolution of i∞∗η on P . This complex is called the Koszul resolu-
tion of i∞∗η and will be denoted by κ(η, NX/Y ). If the normal bundle NX/Y

admits some hermitian metric, then the tautological exact sequence induces a
hermitian metric on Q. If, moreover, the bundle η also admits a hermitian
metric, then the Koszul resolution is a complex of hermitian vector bundles
and will be denoted by κ(η, NX/Y ).

Now, assume that X is a µn-equivariant projective manifold and E is an
equivariant locally free sheaf on X. Then according to [19, (1.4) and (1.5)],
P(E) admits a canonical µn-equivariant structure such that the projection map
P(E) → X is equivariant and the canonical bundle O(1) admits an equivariant
structure. Moreover, let Y → X be an equivariant closed immersion of projec-
tive manifolds, according to [19, (1.6)] the action of µn on X can be extended
to the blowing up BlY X such that the blow-down map is equivariant and the
canonical bundle O(1) admits an equivariant structure. So by endowing P1

with the trivial µn-action, the construction of the deformation to the normal
cone described above is compatible with the equivariant setting.
For the use of our later arguments, the Kähler metric chosen on W should be
well controlled on the fibres of the deformation. For this purpose, it is necessary
to introduce the following definition.
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Definition 3.4. (Rössler) A metric h on W is said to be normal to the defor-
mation if
(a). it is invariant and Kähler;
(b). the restriction h |jg∗(Yg×P1) is a product h′ × h′′, where h′ is a Kähler
metric on Yg and h′′ is a Kähler metric on P1;
(c). the intersections of X ×{0} with j∗(Y ×P1) and of P with j∗(Y ×P1) are
orthogonal at the fixed points.

Lemma 3.5. For any µn-invariant Kähler metric hX on X which induces an
invariant Kähler metric hY on Y , there exists a metric hW on W which is
normal to the deformation and the restriction of hW to X ∼= X × {0} (resp.
Y ∼= Y × {∞}) is exactly hX (resp. hY ). Moreover, we may require that the
hermitian normal bundles NY×P1/Y×{0} and NY×P1/Y×{∞} are both isometric
to the trivial bundles with trivial metrics.

Proof. The existence of the metric which is normal to the deformation is the
content of [20, Lemma 6.13] and [26, Lemma 6.14], such a metric is constructed
via the Grassmannian graph construction. Roughly speaking, according to an-
other description of the deformation to the normal cone via the Grassmannian
graph construction, we have an embedding W → X × Pr × P1 and the metric
hW is the µn-average of the restriction of a product metric on X × Pr × P1

(cf. [26, Lemma 6.14]). When we endow X in the product with the metric
hX , the requirements on restrictions are automatically satisfied since hX is
µn-invariant. To fulfill the requirements on hermitian normal bundles, we may
just choose the Fubini-Study metric on P1.

We summarize some very important results about the application of the defor-
mation to the normal cone as follows. Their proofs can be found in [20, Section
2 and 6.2].

Theorem 3.6. Let i : Y → X be an equivariant closed immersion of equivari-
ant projective manifolds, and let W = W (i) be the deformation to the normal
cone of i. Assume that η is an equivariant hermitian vector bundle on Y . Then
(i). there exists an equivariant hermitian resolution of j∗p∗Y (η) on W , whose
metrics satisfy Bismut assumption (A) and whose restriction to X̃ is equivari-
antly and orthogonally split;
(ii). the natural morphism from the deformation to the normal cone W (ig) to
the fixed point submanifold W (i)g is a closed immersion, this closed immersion
induces the closed immersions P(NXg/Yg

⊕OYg ) → P(NX/Y ⊕OY )g and X̃g →
X̃g;
(iii). the fixed point submanifold of P(NX/Y ⊕ OY ) is P(NXg/Yg

⊕
OYg

)
∐

ζ 6=1 P((NX/Y )ζ);
(iv). the closed immersion i∞,g factors through P(NXg/Yg

⊕OYg ) and the other
components P((NX/Y )ζ) don’t meet Y . Hence the complex κ(OY , NX/Y )g, ob-
tained by taking the 0-degree part of the Koszul resolution, provides a resolution
of OYg

on P(NX/Y ⊕OY )g.
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3.3 Proof of the vanishing theorem

We shall first prove the first part of the vanishing theorem for closed immersions
i.e. the existence of an equivariant hermitian very ample invertible sheaf on
X which is relative to the morphism h : X → S. Generally speaking, such an
invertible sheaf can be constructed rather easily since X admits a µn-projective
action and the µn-action on S is supposed to be trivial, but for the whole proof
of the vanishing theorem we would like to construct a special one which is the
pull-back of some equivariant hermitian very ample invertible sheaf on W (i)
under the identification X ∼= X × {0}. Our starting point is the following.

Definition 3.7. Let M be a µn-projective manifold, and let Pn
M be some

relative projective space over M . A µn-action on Pn
M arising from some µn-

action on the free sheaf O⊕n+1
M via the functorial properties of the Proj symbol

will be called a global µn-action.

The advantage of considering global µn-action is that on a projective space
which admits a global µn-action the twisted line bundle O(1) is naturally µn-
equivariant.

Lemma 3.8. The morphism h : X → S factors though some relative projective
space Pr

S which admits a global µn-action.

Proof. By assumption, X admits a µn-projective action. Then [20, Lemma 2.4
and 2.5] imply that there exists an equivariant closed immersion from X to
some projective space Pr endowed with a global action. By using the universal
property of fibre product, we obtain a morphism from X to Pr

S = S×Pr which
is equivariant. Moreover, this morphism is clearly a closed immersion. Since
the action on S is trivial, the induced action on the fibre product S×Pr is still
global. So we are done.

Lemma 3.9. Let l : W (i) → S be the composition h◦pX ◦π. Then W (i) admits
an equivariant very ample invertible sheaf L which is relative to l.

Proof. By Lemma 3.8, h : X → S factors through some relative projective
space Pr

S which admits a global µn-action. So X admits an equivariant very
ample invertible sheaf relative to h. Since the µn-action on S is supposed to be
trivial, P1

X = X×P1 ∼= X×SP1
S also admits an equivariant very ample invertible

sheaf relative to the morphism h ◦ pX which is denoted by G. Moreover, by
construction, W (i) admits a very ample invertible sheaf OW (1) ⊗ π∗G⊗b for
some b ≥ 0 which is relative to the blow-down map π (cf. [17, Proposition
7.3]). Assume that P1

X ×S Pm
S is the relative projective space associated to

OW (1) ⊗ π∗G⊗b, and that Pn
S is the relative projective space associated to

G. Then the very ample invertible sheave on P1
X ×S Pm

S with respect to the
embedding

P1
X ×S Pm

S ↪→ Pn
S ×S Pm

S
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can be written as G £ OPm
S

(1) whose restriction to W (i) is equal to OW (1) ⊗
π∗G⊗b+1. Therefore, OW (1) ⊗ π∗G⊗b+1 is an very ample invertible sheaf on
W (i) relative to l : W (i) → S, this invertible sheaf is clearly equivariant.

From now on, we shall fix the equivariant very ample invertible sheaf L con-
structed in Lemma 3.9. We also fix a µn-invariant hermitian metric on L, note
that this metric always exits according to an argument of partition of unity.
When we deal with the tensor product of a coherent sheaf F with some power
L⊗n, we just write it as F(n) for simplicity. Before we give the proof of the rest
of the vanishing theorem, we shall recall the concept of equivariant standard
complex and some technical results.

Definition 3.10. Let S be a projective manifold and let ξ. be a bounded
complex of hermitian vector bundles on S. We say ξ. is a standard complex if
the homology sheaves of ξ. are all locally free and they are endowed with some
hermitian metrics. We shall write a standard complex as (ξ., hH) to emphasize
the choice of the metrics on the homology sheaves.

Definition 3.11. Let S be an equivariant projective manifold. An equivariant
standard complex on S is a bounded complex of equivariant hermitian vector
bundles on S whose restriction to Sg is standard. Again we shall write an
equivariant standard complex as (ξ., hH) to emphasize the choice of the metrics
on the homology sheaves.

Due to [27, Theorem 4.8], to every equivariant standard complex (ξ., hH) on
an equivariant projective manifold S, there is a unique axiomatical way to
associate an element c̃hg(ξ., hH) in

⊕
p≥0 Ap,p(Sg)/(Im∂ + Im∂) which satisfies

the differential equation

ddcc̃hg(ξ., hH) =
∑

j

(−1)jchg(Hj(ξ. |Sg
))−

∑

j

(−1)jchg(ξj).

Let 0 → ξ.
′ → ξ. → ξ.

′′ → 0 be a short exact sequence of equivariant standard
complexes on S. Then by restricting to the fixed point submanifold Sg, we get a
short exact sequence of standard complexes 0 → ξ.

′ |Sg
→ ξ. |Sg

→ ξ.
′′ |Sg

→ 0.
Hence we obtain a long exact sequence of homology sheaves of these three
standard complexes. We shall make a stronger assumption. Suppose that for
any j ≥ 0, we have short exact sequence 0 → Hj(ξ.

′ |Sg
) → Hj(ξ. |Sg

) →
Hj(ξ.

′′ |Sg
) → 0 which is denoted by χj . Moreover, for any j ≥ 0, denote by

εj the short exact sequence 0 → ξ
′
j → ξj → ξ

′′
j → 0.

Lemma 3.12. Let notations and assumptions be as above. The identity

c̃hg(ξ.
′
, hH)− c̃hg(ξ., hH) + c̃hg(ξ.

′′
, hH) =

∑
(−1)j c̃hg(χj)−

∑
(−1)j c̃hg(εj)

holds in
⊕

p≥0 Ap,p(Sg)/(Im∂ + Im∂).
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Proof. On Sg, every equivariant standard complex (ξ., hH) splits into a series of
short exact sequences of equivariant hermitian vector bundles in the following
way

0 → Im → Ker → H. → 0

and
0 → Ker → ξ. |Sg

→ Im → 0.

According to the argument given after [27, Theorem 4.8], c̃hg(ξ., hH) is equal
to the alternating sum of the equivariant Bott-Chern secondary characteristic
classes of the short exact sequences above. Now since we have supposed that
0 → Hj(ξ.

′ |Sg
) → Hj(ξ. |Sg

) → Hj(ξ.
′′ |Sg

) → 0 are all exact, by using Snake
lemma, we know that 0 → Im(ξ.

′ |Sg ) → Im(ξ. |Sg ) → Im(ξ.
′′ |Sg ) → 0 and

0 → Ker(ξ.
′ |Sg ) → Ker(ξ. |Sg ) → Ker(ξ.

′′ |Sg ) → 0 are also all exact sequences.
Then the identity in the statement of this lemma immediately follows from the
construction of c̃hg(ξ., hH) and the additivity property of the equivariant Bott-
Chern secondary characteristic classes.

Corollary 3.13. Let 0 → ξ.
(m) → · · · → ξ.

(1) → ξ.
(0) → 0 be an exact

sequence of equivariant standard complexes on S such that for every j ≥ 0,
0 → Hj(ξ.

(m) |Sg
) → · · · → Hj(ξ.

(1) |Sg
) → Hj(ξ.

(0) |Sg
) → 0 is exact. Then

the identity
m∑

k=0

(−1)k c̃hg(ξ.
(k)

, hH) =
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

holds in
⊕

p≥0 Ap,p(Sg)/(Im∂ + Im∂).

Proof. We claim that for every 1 ≤ k ≤ m, the kernel of the complex morphism
ξ.

(k) → ξ.
(k−1)

is still an equivariant standard complex on S. It is clear that we
only need to prove this for k = 1. Firstly, the kernel of ξ.

(1) → ξ.
(0)

is a complex
of equivariant hermitian vector bundles, let’s denote it by K. By restricting to
Sg and using an argument of long exact sequence, we know that the homology
sheaves of K |Sg

are all equivariant hermitian vector bundles since for any

j ≥ 0 the bundle morphism Hj(ξ.
(1) |Sg

) → Hj(ξ.
(0) |Sg

) is already surjective.
Therefore, the assumption of exactness on homologies implies that we can split
0 → ξ.

(m) → · · · → ξ.
(1) → ξ.

(0) → 0 into a series of short exact sequences
of equivariant standard complexes, so the identity in the statement of this
corollary follows from Lemma 3.12.

Remark 3.14. A generalized version of Corollary 3.13, in which the exact
sequence of (equivariant) standard complexes is replaced by an (equivariant)
double standard complex was obtained in Xiaonan Ma’s Ph.D thesis where
more discussions concerning spectral sequences were involved. Anyway, for
arithmetical reason, we only need these special versions as in Lemma 3.12 and
Corollary 3.13.
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Now we turn back to our proof of the vanishing theorem. As before, let
W = W (i) be the deformation to the normal cone associated to an equiv-
ariant closed immersion of projective manifolds i : Y → X. For simplicity,
denote by P 0

g the projective space bundle P(NXg/Yg
⊕ OYg

). Moreover, given
an invariant Kähler metric on X, we fix an invariant Kähler metric on W which
is constructed in Lemma 3.5. In this situation, all normal bundles appearing in
the construction of the deformation to the normal cone will be endowed with
the quotient metrics. We recall the following lemma.

Lemma 3.15. Over W (ig), there are hermitian metrics on O(Xg), O(P 0
g ) and

O(X̃g) such that the isometry O(Xg) ∼= O(P 0
g ) ⊗ O(X̃g) holds and such that

the restriction of O(Xg) to Xg yields the metric of NW (ig)/Xg
, the restriction

of O(X̃g) to X̃g yields the metric of N
W (ig)/X̃g

and the restriction of O(P 0
g ) to

P 0
g induces the metric of NW (ig)/P 0

g
.

Proof. This is [20, Lemma 6.15].

Definition 3.16. Let η be an equivariant hermitian vector bundle on Y , we
say that a resolution

Ξ : 0 → ξ̃m → · · · → ξ̃0 → j∗p∗Y (η) → 0

satisfies the condition (T) if
(i). the metrics on ξ̃. satisfy Bismut assumption (A);
(ii). the restriction of Ξ to X̃ is an equivariantly and orthogonally split exact
sequence;
(iii). the restrictions of Ξ⊥ to W (ig), Xg, P 0

g , X̃g and P 0
g ∩ X̃g are complexes

with l-acyclic elements and l-acyclic homologies, here Ξ⊥ is the complex of
hermitian vector bundles obtained by omitting the last term j∗p∗Y (η) in Ξ;
(iv). the tensor products Ξ⊥ |W (ig) ⊗O(−Xg), Ξ⊥ |W (ig) ⊗O(−P 0

g ) and
Ξ⊥ |W (ig) ⊗O(−X̃g) are complexes with l-acyclic elements and l-acyclic ho-
mologies.

From Theorem 3.6 (i), we already know that there always exists a resolution
of j∗p∗Y (η) which satisfies the conditions (i) and (ii) in Definition 3.16. Let Ξ
be such a resolution, we have the following.

Proposition 3.17. For n À 0, Ξ(n) satisfies the condition (T).

Proof. The reason is that W (ig), Xg, P 0
g , X̃g and P 0

g ∩ X̃g are all closed sub-
manifolds of W .

It is well known that both two squares in the following deformation diagram

Y × {0} s0 //

i

²²

Y × P1

j

²²

Y × {∞}s∞oo

i∞
²²

X × {0} // W P(NX/Y ⊕NP1/∞)oo
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are Tor-independent. Moreover, according to our choices of the Kähler metrics,
we may identify Y × {0} with Y , X × {0} with X, Y × {∞} with Y and
P(NX/Y ⊕NP1/∞) with P = P(NX/Y ⊕OY ). So if Ξ is a resolution of j∗p∗Y (η)
on W , then the restriction of Ξ to X (resp. P ) provides a resolution of i∗η
(resp. i∞∗η). The following theorem is the kernel of the whole proof of the
vanishing theorem.

Theorem 3.18. (Deformation theorem) Let Ξ be a resolution of j∗p∗Y (η) on
W which satisfies the condition (T), then we have δ(Ξ |X) = δ(Ξ |P ).

Proof. Consider the following tensor product of Ξ⊥ |W (ig) with the Koszul
resolution associated to the immersion Xg ↪→ W (ig)

0 → Ξ⊥ |W (ig) ⊗O(−Xg) → Ξ⊥ |W (ig) ⊗OW (ig) → Ξ⊥ |W (ig) ⊗iXg∗OXg
→ 0.

We have to caution the reader that here the tensor product is not the usual
tensor product of two complexes, precisely our resulting sequence is a double
complex and we don’t take its total complex. Since we have assumed that Ξ
satisfies the condition (T), this tensor product induces a short exact sequence
of equivariant standard complexes on S by taking direct images. For j ≥ 0, its
j-th row is the following short exact sequence

εj : 0 → R0l0g∗(O(−Xg)⊗ ξ̃j |W (ig)) → R0l0g∗(ξ̃j |W (ig)) → R0hg∗(ξ̃j |Xg ) → 0

where l0g is the composition of the inclusion W (ig) ↪→ W with the morphism l.

Note that the j-th homology of Ξ⊥ |W (ig) is equal to jg∗(∧jF̃
∨
⊗p∗Yg

η |Yg
) |W (ig)

where F̃ is the non-zero degree part of the normal bundle associated to the
immersion j. Actually jg factors through j0

g : Yg × P1 ↪→ W (ig), then the

j-th homology of Ξ⊥ |W (ig) can be rewritten as j0
g∗(∧jF̃

∨
⊗ p∗Yg

η |Yg
). Write

Yg,0 := Yg × {0} for simplicity. Using the fact that j0
g
∗O(−Xg) is isomorphic

to O(−Yg,0), we deduce from the short exact sequence

0 → j0
g∗(O(−Yg,0)⊗ ∧jF̃

∨
⊗ p∗Yg

η |Yg
) → j0

g∗(OYg×P1 ⊗ ∧jF̃
∨
⊗ p∗Yg

η |Yg
)

→ j0
g∗(iYg∗OYg

⊗ ∧jF̃
∨
⊗ p∗Yg

η |Yg
) → 0

that the j-th homologies of the induced short exact sequence of equivariant
standard complexes form a short exact sequence

χj : 0 → R0ug∗(O(−Yg,0)⊗ ∧jF̃
∨
⊗ p∗Yg

η |Yg
) → R0ug∗(∧jF̃

∨
⊗ p∗Yg

η |Yg
)

→ R0fg∗(∧jF
∨ ⊗ η |Yg

) → 0

where ug is the composition of the inclusion Yg × P1 ↪→ W (ig) with the mor-
phism l0g.
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The main idea of this proof is that the equivariant Bott-Chern secondary char-
acteristic class of the quotient term of the induced short exact sequence of
equivariant standard complexes is nothing but c̃hg(Ξ⊥ |X , hH) which appears
in the expression of δ(Ξ |X) and the equivariant secondary characteristic classes
of χj , εj can be computed by Bismut-Ma’s immersion formula.

Precisely, denote by gXg
the Euler-Green current associated to Xg (i.e.

ddcgXg
= δXg

− c1(O(Xg))) and write Td(Xg) for Td(O(Xg)). Moreover,
write ξ. for the restriction Ξ⊥ |X . Then for any j ≥ 0, we compute

c̃hg(εj) =Tg(ωXg , hξj |Xg )− Tg(ωW (ig), hξ̃j |W (ig))

+ Tg(ωW (ig), hO(−Xg)⊗ξ̃j |W (ig))

+
∫

W (ig)/S

chg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

+
∫

Xg/S

chg(ξj)Td−1(NW (ig)/Xg
)T̃d(Thg, T l0g |Xg

)

+
∫

Xg/S

chg(ξj)R(NW (ig)/Xg
)Td(Thg).

Here, one should note that to simplify the last two terms in the right-hand side
of Bismut-Ma’s immersion formula, we have used an Atiyah-Segal-Singer type
formula for immersion

ig∗(Td−1
g (N)chg(x)) = chg(i∗(x)).

This formula is the content of [20, Theorem 6.16]. Similarly, for any j ≥ 0, we
compute

c̃hg(χj) =Tg(ωYg , h∧
jF∨⊗η|Yg )− Tg(ωYg×P1 , h∧

j F̃∨⊗p∗Yg η|Yg )

+ Tg(ωYg×P1 , hO(−Yg,0)⊗∧j F̃∨⊗p∗Yg η|Yg )

+
∫

Yg×P1/S

chg(∧jF̃
∨
⊗ p∗Yg

η |Yg
)Td(Tug)Td−1(Yg,0)gYg,0

+
∫

Yg/S

chg(∧jF
∨ ⊗ η |Yg

)Td−1(NYg×P1/Yg,0)T̃d(Tfg, Tug |Yg,0)

+
∫

Yg/S

chg(∧jF∨ ⊗ η |Yg
)R(NYg×P1/Yg,0)Td(Tfg).

Denote by Ω(W (ig)) (resp. Ω(−Xg)) the middle (resp. sub) term of the in-
duced short exact sequence of equivariant standard complexes. According to
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Lemma 3.12, we have

c̃hg(Ξ⊥ |X , hH)− c̃hg(Ω(W (ig)), hH) + c̃hg(Ω(−Xg), hH)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=
∑

(−1)jTg(ωYg , h∧
jF∨⊗η|Yg )−

∑
(−1)jTg(ωYg×P1 , h∧

j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ωYg×P1 , hO(−Yg,0)⊗∧j F̃∨⊗p∗Yg η|Yg )

+
∫

Yg×P1/S

∑
(−1)jchg(∧jF̃

∨
⊗ p∗Yg

η |Yg
)Td(Tug)Td−1(Yg,0)gYg,0

+
∫

Yg/S

∑
(−1)jchg(∧jF

∨ ⊗ η |Yg )Td−1(NYg×P1/Yg,0)T̃d(Tfg, Tug |Yg,0)

+
∫

Yg/S

∑
(−1)jchg(∧jF∨ ⊗ η |Yg

)R(NYg×P1/Yg,0)Td(Tfg)

−
∑

(−1)jTg(ωXg , hξj |Xg ) +
∑

(−1)jTg(ωW (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ωW (ig), hO(−Xg)⊗ξ̃j |W (ig))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg

)T̃d(Thg, T l0g |Xg
)

−
∫

Xg/S

∑
(−1)jchg(ξj)R(NW (ig)/Xg

)Td(Thg). (1)

Similarly, we consider the tensor products of Ξ⊥ |W (ig) with the following three
Koszul resolutions

0 → O(−P 0
g ) → OW (ig) → iP 0

g ∗OP 0
g
→ 0,

0 → O(−X̃g) → OW (ig) → i
X̃g∗

O
X̃g
→ 0,

and

0 → O(−X̃g)⊗O(−P 0
g ) → O(−X̃g)⊕O(−P 0

g ) → OW (ig)

→ i
X̃g∩P 0

g ∗
O

X̃g∩P 0
g
→ 0.

We shall still denote by χ. (resp. ε.) the exact sequences consisting of homolo-
gies (resp. elements) in the induced exact sequences of equivariant standard
complexes.
For the first one, denote by gP 0

g
the Euler-Green current associated to P 0

g and
write ξ.

∞
for the restriction Ξ⊥ |P . Moreover, denote by Ω(−P 0

g ) the sub term
of the induced short exact sequence of equivariant standard complexes and
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denote by bg the composition of the inclusion P 0
g ↪→ W (ig) with the morphism

l0g. According to Lemma 3.12, we have

c̃hg(Ξ⊥ |P 0
g
, hH)− c̃hg(Ω(W (ig)), hH) + c̃hg(Ω(−P 0

g ), hH)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=
∑

(−1)jTg(ωYg , h∧
jF∨∞⊗η|Yg )−

∑
(−1)jTg(ωYg×P1 , h∧

j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ωYg×P1 , hO(−Yg,∞)⊗∧j F̃∨⊗p∗Yg η|Yg )

+
∫

Yg×P1/S

∑
(−1)jchg(∧jF̃

∨
⊗ p∗Yg

η |Yg
)Td(Tug)Td−1(Yg,∞)gYg,∞

+
∫

Yg/S

{
∑

(−1)jchg(∧jF
∨
∞ ⊗ η |Yg

)Td−1(NYg×P1/Yg,∞)

· T̃d(Tfg, Tug |Yg,∞)}
+

∫

Yg/S

∑
(−1)jchg(∧jF∨∞ ⊗ η |Yg

)R(NYg×P1/Yg,∞)Td(Tfg)

−
∑

(−1)jTg(ωP 0
g , h

ξ∞j |P0
g ) +

∑
(−1)jTg(ωW (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ωW (ig), hO(−P 0
g )⊗ξ̃j |W (ig))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(P 0

g )gP 0
g

−
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
)

−
∫

P 0
g /S

∑
(−1)jchg(ξ∞j )R(NW (ig)/P 0

g
)Td(Tbg) (2)

where F∞ is the non-zero degree part of the hermitian normal bundle N∞
associated to i∞.
For the second one, denote by g

X̃g
the Euler-Green current associated to X̃g

and denote by Ω(−X̃g) the sub term of the induced short exact sequence of
equivariant standard complexes. Since the restriction of Ξ to the component X̃
is equivariantly and orthogonally split, we know that c̃hg(Ξ |X̃g

, hH) is equal to

0 and the summation
∑

(−1)jchg(ξ̃j) vanishes on X̃g. Using again Lemma 3.12,
we obtain

− c̃hg(Ω(W (ig)), hH) + c̃hg(Ω(−X̃g), hH)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=−
∑

(−1)jTg(ωYg×P1 , h∧
j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ωYg×P1 , hj0
g
∗O(−X̃g)⊗∧j F̃∨⊗p∗Yg η|Yg )
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−
∫

Yg×P1/S

{
∑

(−1)jchg(∧jF̃
∨
⊗ p∗Yg

η |Yg
)Td(Tug)

· c̃h(j0
g
∗O(−X̃g), OYg×P1)}

+
∑

(−1)jTg(ωW (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ωW (ig), hO(−X̃g)⊗ξ̃j |W (ig))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)gX̃g

. (3)

Here the element c̃h(j0
g
∗O(−X̃g), OYg×P1) is the equivariant secondary charac-

teristic class of the following short exact sequence

0 → 0 → j0
g
∗O(−X̃g) → OYg×P1 → 0.

We now consider the last one. By [6, Theorem 2.7], the Euler-Green current
associated to X̃g ∩ P 0

g is the current c1(O(P 0
g ))g

X̃g
+ δ

X̃g
gP 0

g
. Then, by using

the isometry O(Xg) ∼= O(P 0
g )⊗O(X̃g) and Corollary 3.13, we get

− c̃hg(Ω(W (ig)), hH) + c̃hg(Ω(−X̃g), hH)

+ c̃hg(Ω(−P 0
g ), hH)− c̃hg(Ω(−Xg), hH)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=−
∑

(−1)jTg(ωYg×P1 , h∧
j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ωYg×P1 , hj0
g
∗O(−X̃g)⊗∧j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ωYg×P1 , hO(−Yg,∞)⊗∧j F̃∨⊗p∗Yg η|Yg )

−
∑

(−1)jTg(ωYg×P1 , hO(−Yg,0)⊗∧j F̃∨⊗p∗Yg η|Yg )

−
∫

Yg×P1/S

∑
(−1)jchg(∧jF̃

∨
⊗ p∗Yg

η |Yg
)Td(Tug)c̃h(Θ)

+
∑

(−1)jTg(ωW (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ωW (ig), hO(−X̃g)⊗ξ̃j |W (ig))

−
∑

(−1)jTg(ωW (ig), hO(−P 0
g )⊗ξ̃j |W (ig))

+
∑

(−1)jTg(ωW (ig), hO(−Xg)⊗ξ̃j |W (ig))

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)Td−1(P 0
g )

· [c1(O(P 0
g ))g

X̃g
+ δ

X̃g
gP 0

g
]}.

(4)
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Here the element c̃h(Θ) is the equivariant secondary characteristic class of the
following short exact sequence

Θ : 0 → O(−Yg,0) → j0
g
∗O(−X̃g)⊕O(−Yg,∞) → OYg×P1 → 0.

Since s0 : Y × {0} → Y × P1 and s∞ : Y × {∞} → Y × P1 are sections of
smooth morphism, the normal sequences

0 → Tfg → Tug |Yg,0→ NYg×P1/Yg,0 → 0

and
0 → Tfg → Tug |Yg,∞→ NYg×P1/Yg,∞ → 0

are orthogonally split so that T̃d(Tfg, Tug |Yg,0) and T̃d(Tfg, Tug |Yg,∞) are
both equal to 0. Moreover, the normal bundles NYg×P1/Yg,0 and NYg×P1/Yg,∞
are isomorphic to trivial bundles so that R(NYg×P1/Yg,0) and R(NYg×P1/Yg,∞)
are both equal to 0. Furthermore, we may drop all the terms where an integral
is taken over X̃g because

∑
(−1)jchg(ξ̃j) vanishes on X̃g.

Now, we compute (1)−(2)−(3)+(4) which is

c̃hg(Ξ⊥ |X , hH)− c̃hg(Ξ⊥ |P 0
g
, hH) +

∑
(−1)jTg(ωXg , hξj |Xg )

−
∑

(−1)jTg(ωP 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ωYg , h∧

jF∨⊗η|Yg )

+
∑

(−1)jTg(ωYg , h∧
jF∨∞⊗η|Yg )

=
∫

Yg×P1/S

{
∑

(−1)jchg(∧jF̃
∨
⊗ p∗Yg

η |Yg
)Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0
g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg

)T̃d(Thg, T l0g |Xg
)

−
∫

Xg/S

∑
(−1)jchg(ξj)R(NW (ig)/Xg

)Td(Thg)

+
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(P 0

g )gP 0
g

+
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
)

+
∫

P 0
g /S

∑
(−1)jchg(ξ∞j )R(NW (ig)/P 0

g
)Td(Tbg)

+
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)gX̃g

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
.
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Denote by iX (resp. iP ) the inclusion from X to W (i) (resp. P to W (i)). We
may use the Atiyah-Segal-Singer type formula for immersions and the projec-
tion formula in cohomology to compute

iXg∗(
∑

(−1)jchg(ξj)R(NW (ig)/Xg
)Td(Thg))

=iXg∗(R(NW (ig)/Xg
)Td(Thg)ig∗(Td−1

g (NX/Y )chg(η)))

=(iXg ◦ ig)∗(R(NW (ig)/Xg
)Td(Thg)Td−1

g (NX/Y )chg(η)).

Note that the restriction of NW (ig)/Xg
to Yg is trivial so that the last expression

vanishes. An entirely analogous reasoning implies that

iP g∗(
∑

(−1)jchg(ξ∞j )R(NW (ig)/Xg
)Td(Tbg)) = 0.

Thus, we are left with the equality

c̃hg(Ξ⊥ |X , hH)− c̃hg(Ξ⊥ |P 0
g
, hH) +

∑
(−1)jTg(ωXg , hξj |Xg )

−
∑

(−1)jTg(ωP 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ωYg , h∧

jF∨⊗η|Yg )

+
∑

(−1)jTg(ωYg , h∧
jF∨∞⊗η|Yg )

=
∫

Yg×P1/S

{
∑

(−1)jchg(∧jF̃
∨
⊗ p∗Yg

η |Yg
)Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0
g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g) · [Td−1(Xg)gXg
− Td−1(P 0

g )gP 0
g

− Td−1(X̃g)gX̃g
+ Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg

)T̃d(Thg, T l0g |Xg )

+
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).

Using the differential equation which Tg(ξ̃.) satisfies, we compute

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g) · [Td−1(Xg)gXg
− Td−1(P 0

g )gP 0
g

− Td−1(X̃g)gX̃g
+ Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}

=
∫

W (ig)/S

{Td(T l0g)Tg(ξ̃.) · [Td−1(Xg)δXg
− Td−1(P 0

g )δP 0
g

− Td−1(X̃g)δX̃g
+ Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))δ

X̃g
]}

−
∫

W (ig)/S

{Td(T l0g)chg(p∗Y η)Td−1
g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg
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− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}.
(5)

Here we have used the equation

Td−1(Xg)c1(O(Xg))−Td−1(P 0
g )c1(O(P 0

g ))− Td−1(X̃g)c1(O(X̃g))

+Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))c1(O(X̃g)) = 0 (6)

which is [20, (23)].

Again using the fact that ξ̃. is equivariantly and orthogonally split on X̃, the
first integral in the right-hand side of (5) is equal to

∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg
)

−
∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g
).

According to the normal sequence 0 → Thg → T l0g |Xg
→ NW (ig)/Xg

→ 0, we
may write

Td(T l0g) = Td(Thg)Td(NW (ig)/Xg
)− ddcT̃d(Thg, T l0g |Xg

).

So we get
∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg
)

=
∫

Xg/S

Td(Thg)Tg(ξ.)

−
∫

Xg/S

T̃d(Thg, T l0g |Xg
)δYg

chg(η)Td−1
g (N)Td−1(NW (ig)/Xg

)

+
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg

)T̃d(Thg, T l0g |Xg
).

Similarly we have
∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g
)

=
∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

−
∫

P 0
g /S

T̃d(Tbg, T l0g |P 0
g
)δYg

chg(η)Td−1
g (N∞)Td−1(NW (ig)/P 0

g
)

+
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).
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Note that the normal sequence of Thg in T l0g (resp. Tbg in T l0g) is orthog-
onally split on Yg × {0} (resp. Yg × {∞}), then T̃d(Thg, T l0g |Xg )δYg and
T̃d(Tbg, T l0g |P 0

g
)δYg

are both equal to 0. Combining these computations above
we get

∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg
)

−
∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g
)

=
∫

Xg/S

Td(Thg)Tg(ξ.)

+
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg

)T̃d(Thg, T l0g |Xg
)

−
∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

−
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).

(7)

We now compute the second integral in the right-hand side of (5). According
to the normal sequence

0 → Tug → T l0g |Yg×P1→ NW (ig)/Yg×P1 → 0,

we may write

Td(T l0g) = Td(Tug)Td(NW (ig)/Yg×P1)− ddcT̃d(Tug, T l0g |Yg×P1).

Hence

−
∫

W (ig)/S

{Td(T l0g)chg(p∗Y η)Td−1
g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

=−
∫

Yg×P1/S

{Td(Tug)chg(p∗Y η)Td−1
g (F̃ ) · j0

g
∗
[Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

+
∫

Yg×P1/S

{T̃d(Tug, T l0g |Yg×P1)chg(p∗Y η)Td−1
g (NW/Y×P1)

· [Td−1(Xg)(δXg − c1(O(Xg)))− Td−1(P 0
g )(δP 0

g
− c1(O(P 0

g )))

− Td−1(X̃g)(δX̃g
− c1(O(X̃g)))

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))(δ
X̃g
− c1(O(X̃g)))]}.
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By our choices of the metrics, we have Td−1
g (NW/Y×P1) |Yg,0= Td−1

g (N),
Td(Xg) |Yg,0= 1 and Td−1

g (NW/Y×P1) |Yg,∞= Td−1
g (N∞), Td(P 0

g ) |Yg,∞= 1.
Furthermore, by replacing all tangent bundles by relative tangent bundles, on
can carry through the proof given in [20, P. 378-379] to show that

T̃d(Tug, T l0g |Yg×P1) |Yg,0= T̃d(Tfg, Thg |Yg
)

and

T̃d(Tug, T l0g |Yg×P1) |Yg,∞= T̃d(Tfg, T bg |Yg
).

So combining with the equation (6), we get

−
∫

W (ig)/S

{Td(T l0g)chg(p∗Y η)Td−1
g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

=−
∫

Yg×P1/S

{Td(Tug)chg(p∗Y η)Td−1
g (F̃ ) · j0

g
∗
[Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

+
∫

Yg

chg(η)Td−1
g (N)T̃d(Tfg, Thg |Yg

)

−
∫

Yg

chg(η)Td−1
g (N∞)T̃d(Tfg, T bg |Yg ).

(8)

At last, using the fact that the intersections in the deformation diagram are
transversal and the fact that j0

g(Yg × P1) has no intersection with X̃g, we can
compute

∫

Yg×P1/S

{
∑

(−1)jchg(∧jF̃
∨
⊗ p∗Yg

η |Yg
)Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0
g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}

=
∫

Yg×P1/S

{Td(Tug)chg(p∗Y η)Td−1
g (F̃ ) · j0

g
∗
[Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g

− Td−1(X̃g)gX̃g
+ Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}.

(9)
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Gathering (5), (7), (8) and (9) we finally get

c̃hg(Ξ⊥ |X , hH)− c̃hg(Ξ⊥ |P 0
g
, hH) +

∑
(−1)jTg(ωXg , hξj |Xg )

−
∑

(−1)jTg(ωP 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ωYg , h∧

jF∨⊗η|Yg )

+
∑

(−1)jTg(ωYg , h∧
jF∨∞⊗η|Yg )

=
∫

Xg/S

Td(Thg)Tg(ξ.)−
∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

+
∫

Yg

chg(η)Td−1
g (N)T̃d(Tfg, Thg |Yg

)

−
∫

Yg

chg(η)Td−1
g (N∞)T̃d(Tfg, T bg |Yg ). (10)

On the other hand, by definition, we have

δ(Ξ |P ) :=c̃hg(ξ.
∞

, η)−
∑

k

(−1)kTg(ωYg , h∧
kF∨⊗η|Yg )

+
∑

k

(−1)kTg(ωPg , hξ∞k |Pg )

−
∫

Yg/S

Td(Tfg)Td−1
g (F )chg(η)R(Ng)

−
∫

Pg/S

Tg(ξ.
∞

)Td(Tb′g)

−
∫

Yg/S

chg(η)Td−1
g (N∞)T̃d(Tfg, T b′g |Yg )

where b′ : P → S is the composition of the inclusion P ↪→ W (i) and the mor-
phism l. Note that P 0

g is a connected component of Pg and ξ.
∞

is orthogonally
split on the other components since they all belong to X̃g, then we can rewrite
δ(Ξ |P ) as

δ(Ξ |P ) =c̃hg(Ξ⊥ |P 0
g
, hH)−

∑

k

(−1)kTg(ωYg , h∧
kF∨∞⊗η|Yg )

+
∑

k

(−1)kTg(ωP 0
g , h

ξ∞k |P0
g )

−
∫

Yg/S

Td(Tfg)Td−1
g (F )chg(η)R(Ng)

−
∫

P 0
g /S

Tg(ξ.
∞

)Td(Tbg)

−
∫

Yg/S

chg(η)Td−1
g (N∞)T̃d(Tfg, T bg |Yg

).
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Comparing with the definition of δ(Ξ |X), the equality (10) implies that

δ(Ξ |X)− δ(Ξ |P ) = 0

which completes the whole proof of this deformation theorem.

Now we consider the zero section imbedding i∞ : Y → P = P(N∞⊕OY ). Here
we use the fact that N∞ is isomorphic to NX/Y , we caution the reader that this
is not necessarily an isometry since N∞ carries the quotient metric induced by
the Kähler metric on P but NX/Y carries the quotient metric induced by the
Kähler metric on X. We recall that on P we have a tautological exact sequence

0 → O(−1) → π∗P (N∞ ⊕OY ) → Q → 0.

The equivariant section σ : OP → π∗P (N∞ ⊕ OY ) → Q induces the following
Koszul resolution

0 → ∧rkQQ∨ → · · · → Q∨ → OP → i∞∗OY → 0.

Since σ is equivariant, the image of OPg
under σ |Pg

is contained in Qg. This
means that σ |Pg

induces a Koszul resolution on Pg of the following form

0 → ∧rkQgQ∨g → · · · → Q∨g → OPg
→ i∞,g∗OYg

→ 0.

Proposition 3.19. Let κ := κ(η, N∞) be a hermitian Koszul resolution on P
defined in Definition 3.3. Then for n À 0, we have δ(κ(n)) = 0.

Proof. Denote the non-zero degree part of Q |Pg
by Q⊥, then we have the

following isometry

∧iQ
∨ |Pg= ∧i(Q

∨
g ⊕Q

∨
⊥) ∼=

⊕

t+s=i

(∧tQ
∨
g ⊗ ∧sQ

∨
⊥).

According to the arguments given before this proposition, we know that the
restriction of κ⊥ to Pg can be written as a direct sum of complexes of equivariant
hermitian vector bundles on Pg of the following form

0 → ∧rkQgQ
∨
g ⊗ (∧kQ

∨
⊥ ⊗ π∗Pg

η |Yg ) → · · · → Q
∨
g ⊗ (∧kQ

∨
⊥ ⊗ π∗Pg

η |Yg )

→ ∧kQ
∨
⊥ ⊗ π∗Pg

η |Yg
→ 0

which provide resolutions of i∞,g∗(∧kF
∨
∞ ⊗ η |Yg ) where F∞, as before, is the

non-zero degree part of the normal bundle N∞ associated to i∞. If n À 0, we
may assume that all elements in these resolutions are acyclic. Therefore, by
applying Bisumt-Ma’s immersion formula to these resolutions and summing all
of them, we get δ(κ(n)) = 0.
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It’s now ready to finish the proof of the vanishing theorem for equivariant closed
immersions. Let η be an equivariant hermitian vector bundle on Y , assume that

Ψ : 0 → ξm → · · · → ξ1 → ξ0 → i∗η → 0

is a resolution of i∗η by equivariant hermitian vector bundles on X which
satisfies Bismut assumption (A). We need to prove that for n À 0, δ(Ψ(n)) = 0.

Proof. (of Theorem 3.1) We first construct a resolution of p∗Y η on W (i) as

Ξ : 0 → ξ̃m → · · · → ξ̃0 → ξ̃0 → j∗p∗Y (η) → 0

which satisfies the condition (i) and (ii) in Definition 3.16. Then the restriction
of Ξ to X (resp. P ) provides a resolution of i∗η (resp. i∞∗η). Over X, we can
find a third resolution Φ of i∗η which dominates Ψ and Ξ |X . Namely we get
short exact sequences of exact sequences

0 → Ker(n) → Φ(n) → Ψ(n) → 0

and
0 → Ker(n) → Φ(n) → Ξ(n) |X→ 0.

Then after omitting i∗η their restrictions to Xg become two exact sequences
of complexes. Since n À 0 we may assume that all elements and homologies
in the induced double complexes are acyclic, so that by taking direct images
we get two exact sequences of equivariant standard complexes on S. These
two short exact sequences of equivariant standard complexes clearly satisfy
the assumptions in Lemma 3.12. Therefore, using Lemma 3.12, Bismut-Ma’s
immersion formula and the double complex formula of equivariant Bott-Chern
singular currents (cf. Theorem 2.14), we obtain that

c̃hg(Ψ(n), hH)− c̃hg(Φ(n), hH) + c̃hg(Ker(n), hH)

+ Tg(ωXg , hΨ(n)⊥)− Tg(ωXg , hΦ(n)⊥) + Tg(ωXg , hKer(n)⊥)

=
∫

Xg/S

[Tg(Ψ(n)⊥)− Tg(Φ(n)⊥) + Tg(Ker(n)⊥)] · Td(Thg)

which implies that

δ(Φ(n)) = δ(Ψ(n)) + δ(Ker(n)).

By applying Bismut-Ma’s immersion formula to the case where the immersion
is the identity map and η is equal to the zero bundle, we get δ(Ker(n)) = 0 so
that δ(Φ(n)) = δ(Ψ(n)). Similarly, we have δ(Φ(n)) = δ(Ξ(n) |X) and hence
δ(Ψ(n)) = δ(Ξ(n) |X). An entirely analogous reasoning implies that δ(κ(n)) =
δ(Ξ(n) |P ). Then the vanishing of δ(Ψ(n)) follows from Theorem 3.18 and
Proposition 3.19.
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4 Equivariant arithmetic Grothendieck groups with fixed wave
front sets

By an arithmetic ring D we understand a regular, excellent, Noetherian integral
ring, together with a finite set S of embeddings D ↪→ C, which is invariant
under a conjugate-linear involution F∞ (cf. [15, Def. 3.1.1]). Denote by µn

the diagonalisable group scheme over D associated to Z/nZ. A µn-equivariant
arithmetic scheme over D is a Noetherian scheme of finite type, endowed with
a µn-projective action over D (cf. [20, Section 2]). Let X be a µn-equivariant
arithmetic scheme whose generic fibre is smooth, then X(C), the set of complex
points of the variety

∐
σ∈S X ×D C, is a disjoint union of projective manifolds.

This manifold admits an action of the group of complex n-th roots of unity
and an anti-holomorphic involution induced by F∞ which is still denoted by
F∞. It was shown in [29, Prop. 3.1] that if X is regular, then the fixed point
subscheme Xµn

is also regular. Fix a primitive n-th root of unity ζn and
denote its corresponding holomorphic automorphism on X(C) by g, by GAGA
principle we have a natural isomorphism Xµn(C) ∼= X(C)g.

Definition 4.1. An equivariant hermitian sheaf (resp. vector bundle) E on X
is a coherent sheaf (resp. vector bundle) E on X, assumed locally free on X(C),
endowed with a µn-action which lifts the action of µn on X and a hermitian
metric h on the associated bundle EC, which is invariant under F∞ and g.

Remark 4.2. Let E be an equivariant hermitian sheaf (resp. vector bundle)
on X, the restriction of E to the fixed point subscheme Xµn

has a natural
Z/nZ-grading structure E |Xµn

∼= ⊕k∈Z/nZEk. We shall often write Eµn for
E0. It is clear that the associated bundle of Eµn

over X(C) is exactly equal to
Eg.

Over a complex manifold M , we may consider the current space which is the
continuous dual of the space of smooth complex valued differential forms (cf.
[25, Chapter IX]). The wave front set WF(ω) of a current ω over M is a closed
conical subset of the cotangent bundle T ∗RM0 := T ∗RM\{0}. This conical subset
measures the singularities of ω, actually the projection of WF(ω) in M is equal
to the singular locus of the support of ω. It also allows us to define certain
products and pull-backs of currents. We refer to [18, Chapter VIII] for the
definition and various properties of wave front set.
Now let X be a µn-equivariant arithmetic scheme with smooth generic fibre
and let S be a conical subset of T ∗RX(C)0, denote by Dp,p(X(C)g, S) the set
of currents ω of type (p, p) on X(C)g which satisfy F ∗∞ω = (−1)pω and whose
wave front sets are contained in S, we shall write Ũ(Xµn

, S) for the current
class

Ũ(X(C)g, S) :=
⊕

p≥0

(Dp,p(X(C)g, S)/(Im∂ + Im∂)).

Let E be an equivariant hermitian sheaf or vector bundle on X. Following
the same notations and definitions as in [20, Section 3], we write chg(E) for
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the equivariant Chern character form chg((EC, h)) associated to the hermitian
holomorphic vector bundle (EC, h) on X(C). Similarly, we have the equivariant
Todd form Tdg(E). Furthermore, let ε : 0 → E

′ → E → E
′′ → 0 be an

exact sequence of equivariant hermitian sheaves or vector bundles on X, we
can associate to it an equivariant Bott-Chern secondary characteristic class
c̃hg(ε) ∈ Ũ(Xµn , ∅) which satisfies the differential equation

ddcc̃hg(ε) = chg(E
′
)− chg(E) + chg(E

′′
).

Definition 4.3. Let X be a µn-equivariant arithmetic scheme with smooth
generic fibre and let S be a conical subset of T ∗RX(C)0, we define the equivariant
arithmetic Grothendieck group Ĝ0(X, µn, S) (resp. K̂0(X, µn, S)) with respect
to X and S as the free abelian group generated by the elements of Ũ(Xµn

, S)
and by the equivariant isometry classes of equivariant hermitian sheaves (resp.
vector bundles) on X, together with the relations
(i). for every exact sequence ε as above, c̃hg(ε) = E

′ − E + E
′′
;

(ii). if α ∈ Ũ(Xµn
, S) is the sum of two elements α′ and α′′ in Ũ(Xµn

, S), then
the equality α = α′ + α′′ holds in Ĝ0(X, µn, S) (resp. K̂0(X, µn, S)).

Remark 4.4. (i). When S′ ⊂ S, [28, Theorem 3.9 (ii)] implies that the natural
map from Ũ(Xµn

, S′) to Ũ(Xµn
, S) is injective. So the first generating relation

in Definition 4.3 does make sense.
(ii). When X is regular, one can carry out the proof of [20, Proposition 4.2]
to show that the natural morphism from K̂0(X, µn, S) to Ĝ0(X, µn, S) is an
isomorphism.
(iii). The definition of the equivariant arithmetic Grothendieck group implies
that there are exact sequences

Ũ(Xµn , S)
Id // Ĝ0(X, µn, S)

π // G0(X, µn) // 0

and

Ũ(Xµn
, S)

Id // K̂0(X, µn, S)
π // K0(X, µn) // 0

where Id is the identity map and π is the forgetful map. Here the group
G0(X, µn) is the Grothendieck group of µn-equivariant coherent sheaves which
are locally free on X(C), by a theorem of Quillen (cf. [24, Thm. 3 Cor. 1]) we
know that it is isomorphic to the ordinary Grothendieck group of µn-equivariant
coherent sheaves.

In [27, Section 2], we have introduced the ring structure of K̂0(X, µn, ∅).
Since we may have a well-defined product of two currents if their wave front
sets have no intersection, and the wave front set is invariant under the op-
eration of multiplying a smooth current, we know that the Grothendieck
group K̂0(X, µn, S) has a K̂0(X, µn, ∅)-module structure. The same thing
goes to Ĝ0(X, µn, ∅) and Ĝ0(X, µn, S). Furthermore, consider the isomorphism
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R(µn) ∼= K0(D)[T ]/(1−Tn). Let I be the µn-equivariant hermitian D-module
whose term of degree 1 is D endowed with the trivial metric and whose other
terms are 0. Then we may make K̂0(D, µn, ∅) an R(µn)-algebra under the
ring morphism which sends T to I. By doing pull-backs, we may endow ev-
ery arithmetic Grothendieck group we defined before with an R(µn)-module
structure.
Now we investigate the wave front set of a current after doing push-forward.
Let f be a holomorphic map of compact complex manifolds, we may define a
push-forward f∗ on current space which is the dual map of the pull-back of
smooth forms. When f is smooth, the push-forward f∗ extends the integration
of smooth forms over the fibre. Assume that we are given a smooth morphism
f : U → V of compact complex manifolds, then f∗ induces a current K over
the product space V × U defined as

K(α⊗ β) = (f∗β)(α)

where α and β are smooth forms over V and U respectively. Define

M = {(v, u) ∈ V × U | f(u) = v}
which is a submanifold in V ×U . From the fact that f∗β is just the integration
of smooth forms over the fibre, it is easily seen that the current K ∈ D∗(V ×U)
is exactly the object dSM in [18, Theorem 8.1.5]. Then by that theorem, the
wave front set of K is equal to

WF(K) = {(v, u, ξ,−ξ) ∈ T ∗RV × T ∗RU | f(u) = v, ξ 6= 0}.
Let S be a conical subset of T ∗RU0, we fix some notations as follows.

WF(K)V ={(v, ξ) ∈ T ∗RV0 | ∃u ∈ U, (v, u, ξ, 0) ∈ WF(K)}
WF′(K)U ={(u, η) ∈ T ∗RU0 | ∃v ∈ V, (v, u, 0,−η) ∈ WF(K)}

WF′(K)V ◦ S ={(v, ξ) ∈ T ∗RV0 | ∃(u, η) ∈ S, (v, u, ξ,−η) ∈ WF(K)}.
Theorem 4.5. Let notations and assumptions be as above. Assume that ω is a
current over U whose wave front set is contained in S with S ∩WF′(K)U = ∅,
then the wave front set of f∗ω is contained in

S′ := WF(K)V ∪WF′(K) ◦ S.

Proof. This follows from [18, Theorem 8.2.12 and 8.2.13].

Remark 4.6. (i) In our situation, the condition S ∩WF′(K)U = ∅ is always
satisfied because by definition we have WF′(K)U = ∅.
(ii). In our situation, S′ is always equal to WF′(K) ◦ S because WF(K)V = ∅.
(iii). If S is the empty set, then S′ is also empty. This is compatible with the
push-forward of smooth forms.
(iv). Assume that the restriction of f to a closed submanifold W is also smooth.
Denote by NU/W the normal bundle of W in U . If S = N∨

U/W,R \ {0}, then
S′ = ∅.
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We now turn to the arithmetic case. Let X, Y be two µn-equivariant arithmetic
schemes with smooth generic fibres, and let f : X → Y be an equivariant
morphism over D which is smooth on the complex numbers. Fix a µn(C)-
invariant Kähler metric on X(C) so that we get a Kähler fibration with respect
to the holomorphic submersion fC : X(C) → Y (C). Let E be an f -acyclic
µn-equivariant hermitian sheaf on X, we know that the direct image f∗E is
locally free on Y (C) and it can be endowed with a natural equivariant structure
and the L2-metric. Let Ĝ0

ac
(X, µn, S) be the group generated by f -acyclic

equivariant hermitian sheaves on X and the elements of Ũ(Xµn , S), with the
same relations as in Definition 4.3. A theorem of Quillen (cf. [24, Cor.3 P.
111]) for the algebraic analogs of these groups implies that the natural map
Ĝ0

ac
(X, µn, S) → Ĝ0(X, µn, S) is an isomorphism. So the following definition

does make sense.

Definition 4.7. Let notations and assumptions be as above. The push-forward
morphism f∗ : Ĝ0(X, µn, S) → Ĝ0(Y, µn, S′) is defined in the following way.
(i). For every f -acyclic µn-equivariant hermitian sheaf E on X, f∗E =
(f∗E, f∗hE)− Tg(ωX , hE).
(ii). For every element α ∈ Ũ(Xµn

, S), f∗α =
∫

Xg/Yg
Tdg(Tf, hTf )α ∈

Ũ(Yµn
, S′).

Remark 4.8. If Y is regular, by Remark 4.4 (ii) we know that K̂0(Y, µn, S′)
is naturally isomorphic to Ĝ0(Y, µn, S′) so that (f∗E, f∗hE) admits a finite
equivariant hermitian resolution; if the morphism f is flat and Y is reduced,
then (f∗E, f∗hE) is locally free when E is so. Therefore in both two cases above,
one can also define a reasonable push-forward morphism f∗ : K̂0(X, µn, S) →
K̂0(Y, µn, S′).

Theorem 4.9. The push-forward morphism f∗ defined in Definition 4.7 is a
well-defined group homomorphism.

Proof. The argument is the same as in the proof of [27, Theorem 5.2].

Lemma 4.10. (Projection formula) For any elements y ∈ K̂0(Y, µn, ∅) and
x ∈ Ĝ0(X, µn, S), the identity f∗(f∗y · x) = y · f∗x holds in Ĝ0(Y, µn, S′).

Proof. Assume that y = E is an equivariant hermitian vector bundle and x = F
is an f -acyclic equivariant hermitian sheaf, then f∗y · x = f∗E ⊗ F . By
projection formula for direct images and the definition of L2-metric, we know
that f∗(f∗E ⊗ F ) is isometric to E ⊗ f∗F . Moreover, concerning the analytic
torsion form, we have Tg(ωX , hf∗E⊗F ) = chg(E)Tg(ωX , hF ). So the projection
formula f∗(f∗y · x) = y · f∗x holds in this case.
Assume that y = E is an equivariant hermitian vector bundle and x = α is
represented by some singular current. We write f∗g and fg∗ for the pull-back
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and push-forward of currents respectively, then

f∗(f∗y · x) =f∗(f∗g chg(E)α) = fg∗(f
∗
g chg(E)αTdg(Tf))

=chg(E)fg∗(αTdg(Tf))

=chg(E)
∫

Xg/Yg

αTdg(Tf) = y · f∗x.

Here we have used an extension of projection formula of smooth forms p∗(p∗α1∧
α2) = α1∧p∗α2 (cf. [14, Prop. IX p. 303]) to the case where the second variable
α2 is replaced by a singular current. The fact that this extension is valid follows
from the definition of p∗ and the definition of the product of smooth form and
singular current.
Assume that y = β is represented by some smooth form and x = E is an
f -acyclic hermitian sheaf, then

f∗(f∗y · x) =f∗(f∗g (β)chg(F )) = fg∗(f
∗
g (β)chg(F )Tdg(Tf))

=βfg∗(chg(E)Tdg(Tf))

=β

∫

Xg/Yg

chg(E)Tdg(Tf) = β(chg(f∗F )− ddcTg(ωX , hF ))

which is exactly y · f∗x.
Finally, assume that y = β is represented by some smooth form and x = α is
represented by some singular current, then

f∗(f∗y · x) =f∗(f∗g (β)ddcα) = fg∗(f
∗
g (β)ddcαTdg(Tf))

=βddcfg∗(αTdg(Tf))

which is also equal to y · f∗x.
Since f∗ and f∗ are both group homomorphisms, we may conclude the projec-
tion formula by linear extension.

Remark 4.11. Lemma 4.10 implies that f∗ is a homomorphism of R(µn)-
modules, and hence it induces a push-forward morphism after taking localiza-
tion.

To end this section, we recall an important lemma which will be used frequently
in our later arguments.

Lemma 4.12. ([20, Lemma 4.5]) Let X be a regular µn-equivariant arithmetic
scheme and let E be an equivariant hermitian vector bundle on Xµn

such that
Eµn

= 0. Then the element λ−1(E) is invertible in K̂0(Xµn
, µn, S)(ρ).

5 Arithmetic concentration theorem

In this section, we shall prove the arithmetic concentration theorem which
is an analog of Thomason’s result in Arakelov geometry. Let X be a µn-
equivariant arithmetic scheme with smooth generic fibre, we consider a special
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closed immersion i : Xµn
↪→ X where Xµn

is the fixed point subscheme of
X. We shall first construct a well-defined group homomorphism i∗ between
equivariant arithmetic G0-groups as in the algebraic case. To construct i∗,
some analytic datum, which is the equivariant Bott-Chern singular current,
should be involved. Precisely speaking, let η be a µn-equivariant hermitian
sheaf on Xµn

and let ξ. be a bounded complex of µn-equivariant hermitian
sheaves which provides a resolution of i∗η on X. Such a resolution always
exists since the generic fibre of X is supposed to be smooth. Then we may
have an equivariant Bott-Chern singular current Tg(ξ.) ∈ Ũ(Xµn). Note that
on the complex numbers the 0-degree part of the normal bundle N := NX/Xg

vanishes (cf. [20, Prop. 2.12]) so that the wave front set of Tg(ξ.) is the empty
set. This fact means that the following definition does make sense.

Definition 5.1. Let notations and assumptions be as above. The embedding
morphism

i∗ : Ĝ0(Xµn
, µn, S) → Ĝ0(X, µn, S)

is defined in the following way.
(i). For every µn-equivariant hermitian sheaf η on Xµn , suppose that ξ. is a
resolution of i∗η on X whose metrics satisfy Bismut assumption (A), i∗[η] =∑

k(−1)k[ξk] + Tg(ξ.).
(ii). For every α ∈ Ũ(Xµn , S), i∗α = αTd−1

g (N).

Theorem 5.2. The embedding morphism i∗ defined in Definition 5.1 is a well-
defined group homomorphism.

Proof. The argument is the same as in the proof of [27, Theorem 4.2].

Lemma 5.3. (Projection formula) For any elements x ∈ K̂0(X, µn, ∅) and y ∈
Ĝ0(Xµn

, µn, S), the identity i∗(i∗x · y) = x · i∗y holds in Ĝ0(X, µn, S).

Proof. Assume that x = E is an equivariant hermitian vector bundle and y = F
is an equivariant hermitian sheaves. Let ξ. be a resolution of i∗F on X, then
E ⊗ ξ. provides a resolution of i∗(i∗E ⊗ F ). By definition we have

i∗(i∗x · y) =
∑

(−1)k[ξk ⊗ E] + chg(E)Tg(ξ.)

which is exactly x · i∗y. Assume that x = α is represented by some smooth
form and y = F is an equivariant hermitian sheaf. Again let ξ. be a resolution
of i∗F on X, then

i∗(i∗x · y) = αTd−1
g (NX/Xg

)chg(F ) = α[ddcTg(ξ.) +
∑

(−1)kchg(ξk)]

which is exactly x · i∗y. Now assume that x = E is an equivariant hermitian
vector bundle and y = α is represented by some singular current, then

i∗(i∗x · y) = i∗(chg(E)α) = chg(E)αTd−1
g (NX/Xg

)
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which is exactly x · i∗y. Finally, if x is represented by some smooth form and y
is represented by some singular current then their product is well-defined and
i∗(i∗x · y) is obviously equal to x · i∗y. Note that i∗ and i∗ are group homo-
morphisms, so we may conclude the projection formula from its correctness on
generators. This completes the whole proof.

Remark 5.4. Lemma 5.3 implies that i∗ is even a homomorphism of R(µn)-
modules so that it induces a homomorphism between arithmetic G0-groups
after taking localization.

With Remark 5.4, we may formulate the arithmetic concentration theorem as
follows.

Theorem 5.5. The embedding morphism i∗ : K̂0(Xµn , µn, S)(ρ) →
K̂0(X, µn, S)(ρ) is an isomorphism if X is regular. In this case, the in-
verse morphism of i∗ is given by λ−1

−1(N
∨
X/Xµn

) · i∗ where NX/Xµn
is the

normal bundle of i(Xµn) in X.

Before we give the proof of this concentration theorem, we recall a crucial
lemma as follows.

Lemma 5.6. Let η be an equivariant hermitian vector bundle on Xµn
. Assume

that ξ. is an equivariant hermitian resolution of i∗η on X whose metrics satisfy
Bismut assumption (A). Then the equality

λ−1(N
∨
) · η −

∑

j

(−1)ji∗(ξj) = Tg(ξ.)

holds in the group K̂0(Xµn
, µn, S).

Proof. This is [27, Lemma 4.11].

Proof. (of Theorem 5.5) Denote by U the complement of Xµn
in X, then j :

U ↪→ X is a µn-equivariant open subscheme of X whose fixed point set is
empty. We consider the following double complex

Ũ(Xµn , S)(ρ)

i∗ //

Id

²²

Ũ(Xµn , S)(ρ)

j∗ //

Id

²²

Ũ(Uµn , S)(ρ)
//

Id

²²

0

K̂0(Xµn
, µn, S)(ρ)

i∗ //

π

²²

K̂0(X, µn, S)(ρ)

j∗ //

π

²²

K̂0(U, µn, S)(ρ)
//

π

²²

0

K0(Xµn
, µn)(ρ)

i∗ //

²²

K0(X, µn)(ρ)
j∗ //

²²

K0(U, µn)(ρ)
//

²²

0

0 0 0
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whose first and second columns are both exact sequences according to Re-
mark 4.4 (iii). For the third column, K0(U, µn)(ρ) is equal to 0 by [29,
(2.1.3)], Ũ(Uµn , S)(ρ) is also equal to 0 since Uµn is empty. Then from Re-
mark 4.4 (iii) we know that K̂0(U, µn, S)(ρ) is equal to 0. We claim that
i∗ : K̂0(Xµn

, µn, S)(ρ) → K̂0(X, µn, S)(ρ) is surjective. Indeed, for any ele-
ment x ∈ K̂0(X, µn, S)(ρ) we may find an element y ∈ K̂0(Xµn

, µn, S)(ρ) such
that i∗π(y) = π(x) because the third line is exact. This means x−i∗(y) is in the
kernel of π, so there exists an element α ∈ Ũ(Xµn

, S)(ρ) such that α = x− i∗(y)
in K̂0(X, µn, S)(ρ). Set β = αTdg(N), we get i∗(y + β) = i∗(y) + α = x in
K̂0(X, µn, S)(ρ). Hence, i∗ is surjective.
We now prove that the embedding morphism i∗ : K̂0(Xµn , µn, S)(ρ) →
K̂0(X, µn, S)(ρ) is really an isomorphism by constructing its inverse morphism.
Let ω be an element in Ũ(Xµn , S), by definition we have

λ−1
−1(N

∨
X/Xµn

) · i∗i∗(ω) =λ−1
−1(N

∨
X/Xµn

) · ωTd−1
g (NX/Xg

)

=chg(λ−1
−1(N

∨
X/Xg

))ωTd−1
g (NX/Xg

)

=ω.

Let η be an equivariant hermitian vector bundle on Xµn
and assume that ξ. is

an equivariant hermitian resolution of i∗η on X whose metrics satisfy Bismut
assumption (A), then by the definition of the embedding morphism i∗ and
Lemma 5.6 we have

λ−1
−1(N

∨
X/Xµn

) · i∗i∗(η) =λ−1
−1(N

∨
X/Xµn

) · i∗(
∑

k

(−1)kξk + Tg(ξ.)) = η.

So the inverse morphism of i∗ is of the form λ−1
−1(N

∨
X/Xµn

) · i∗ and we are
done.

6 A Lefschetz fixed point formula for singular arithmetic
schemes with smooth generic fibres

6.1 The statement

We formulate in this subsection the statement of our main theorem, a singular
Lefschetz fixed point formula for equivariant arithmetic schemes with smooth
generic fibres. Its proof will be given in next two subsections. Let f : X → Y
be a µn-equivariant morphism between two arithmetic schemes with smooth
generic fibres, which is smooth on the complex numbers. This morphism f
is automatically projective and hence proper, according to the definition of
equivariant arithmetic scheme. Suppose that f factors through some regular
equivariant arithmetic scheme Z. More precisely, our assumption is that there
exist an equivariant closed immersion i : X ↪→ Z and an equivariant morphism
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h : Z → Y such that f = h ◦ i and h is also smooth on the complex numbers.
Moreover, we shall assume that the µn-action on Y is trivial.
Let η be an equivariant coherent sheaf on X, then there exists a bounded
complex of equivariant vector bundles which provides a resolution of i∗η on
Z because Z is regular. Since any two equivariant resolution of i∗η can be
dominated by a third one, the symbol Tork

OZ
(i∗η,OZµn

) does make sense.
We choose arbitrary µn-invariant Kähler forms ωZ and ωX on Z(C) and X(C)
respectively, the Kähler form ωX is not necessarily the Kähler form induced by
ωZ . The Kähler form on X(C) induced by ωZ will be denoted by ωZ

X . Denote
by N the normal bundle of iC(X(C)) in Z(C), we endow it with the quotient
metric provided that TX(C) carries the Kähler metric corresponding to ωZ

X .
Let F be the non-zero degree part of N , then by [13, Exp. VII, Lem. 2.4 and
Prop. 2.5] for any equivariant hermitian sheaf η on X there exists a canonical
isomorphism on Xg

Tork
OZ

(i∗η,OZµn
)C ∼= ∧kF∨ ⊗ ηC |Xg

which is equivariant. This means we may endow Tork
OZ

(i∗η,OZµn
)C with a

hermitian metric induced by the metrics on F and η so that it becomes an
equivariant hermitian sheaf on Xµn . Moreover, we know that the hermitian
vector bundle F fits the following exact sequence

(F , ωX) : 0 → NX/Xg
→ NZ/Zg

→ F → 0

where NZ/Zg
admits the quotient metric associated to ωZ and NX/Xg

admits
the quotient metric associated to ωX . Similarly, we shall denote by (F , ωZ

X)
the hermitian exact sequence F whose metric on NX/Xg

is induced by ωZ
X .

The push-forward homomorphism from the arithmetic G0-group Ĝ0(X, µn, ∅)
to Ĝ0(Y, µn, ∅) with respect to the Kähler form ωX is denoted by f∗ as usual.
The push-forward homomorphism from Ĝ0(Xµn

, µn, ∅) to Ĝ0(Y, µn, ∅) with re-
spect to the Kähler form ωZ

X will be denoted by fZ
µn∗.

Write T̃d(Tfg, ω
X , ωZ

X) for the secondary characteristic class of the exact se-
quence

0 // (Tfg, ω
X) Id // (Tfg, ω

Z
X) // 0 // 0

where the middle term carries the metric induced by ωZ
X and the sub term

carries the metric induced by ωX . Then the singular Lefschetz fixed point
formula for equivariant arithmetic schemes with smooth generic fibres can be
formulated as follows.

Theorem 6.1. Let notations and assumptions be as above. Then for any equiv-
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ariant hermitian sheaf η on X, the equality

f∗(η) =fZ
µn∗(i

∗
µn

(λ−1
−1(NZ/Zµn

)) ·
∑

k

(−1)kTork
OZ

(i∗η,OZµn ))

+
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1

g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg
)

+
∫

Xg/Y

T̃d(Tfg, ω
X , ωZ

X)chg(η)Tdg(NZ/Zg
)Td−1

g (F )

holds in the group Ĝ0(Y, µn, ∅)(ρ).

Remark 6.2. This arithmetic Lefschetz fixed point formula was inspired by
[29, Théorème 3.5].

6.2 Equivariant arithmetic G0-theoretic vanishing theorem

The central actor in the proof of Theorem 6.1 is the following vanishing theorem
in equivariant arithmetic G0-theory, which can be viewed as a translation of
Theorem 3.1.

Theorem 6.3. Let notations and assumptions be as in last subsection. Let η
be an equivariant hermitian sheaf on X, and let

Ψ : 0 → ξm → · · · → ξ1 → ξ0 → i∗η → 0

be a resolution of i∗η by equivariant hermitian vector bundles on Z. De-
note by hµn∗ the push-forward homomorphism from K̂0(Zµn , µn, N∨

g,R \ {0})
to Ĝ0(Y, µn, ∅) with respect to the Kähler form ωZ . Then the formula

fZ
µn∗(

∑
(−1)kTork

OZ
(i∗η,OZµn ))− hµn∗(

∑
(−1)k(ξk |Zµn ))

=
∫

Zg/Y

Tg(ξ.)Td(Thg) +
∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)

+
∫

Xg/Y

chg(η)Td−1
g (N)T̃d((Tfg, ω

Z
X), Thg |Xg

)

holds in Ĝ0(Y, µn, ∅).
Proof. Following the same arguments given in the proof of Lemma 3.9, we may
show that the deformation to the normal cone W (i) admits an equivariant
hermitian very ample invertible sheaf L which is relative to the morphism
l : W (i) → Y . By Theorem 3.1 and the fact that L is very ample, we conclude
that there exists an integer k0 > 0 such that for n ≥ k0, L⊗n is l-acyclic and
δ(Ψ(n)C) = 0. Then l factors through an equivariant projective space bundle
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P(E) where E is locally free of rank r + 1 on Y and l∗L⊗k0 is an equivariant
quotient of E . Denote by p : P(E) → Y the canonical projection. On P := P(E),
we have a canonical exact sequence

H : 0 → OP → p∗(E∨)(1) → · · · → p∗(∧r+1E∨)(r + 1) → 0.

Restricting this sequence to Z, we obtain an exact sequence of exact sequences

0 → Ψ → Ψ⊗ h∗(E∨)(1) → · · · → Ψ⊗ h∗(∧r+1E∨)(r + 1) → 0.

Endow E with any µn(C)-invariant hermitian metric. We claim that the as-
sumption that Theorem 6.3 holds for Ψ⊗h∗(∧nE∨)(n) with n ≥ 1 implies that
it holds for Ψ. In fact, since H is an exact sequence of flat modules, for any
k ≥ 0 we have the following exact sequence on Xµn

0 → Tork
OZ

(i∗η,OZµn
) →Tork

OZ
(i∗η,OZµn

)⊗ f∗µn
(E∨)(1) → · · ·

→Tork
OZ

(i∗η,OZµn
)⊗ f∗µn

(∧r+1E∨)(r + 1) → 0.

We compute

fZ
µn∗(Tork

OZ
(i∗η,OZµn ))

=fZ
µn∗(−

r+1∑

j=1

(−1)jTork
OZ

(i∗η,OZµn )⊗ f∗µn
(∧jE)(j))

+
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(∧kF

∨
)chg(η)(−1)r+1c̃hg(H)

and

m∑

k=0

(−1)khµn∗(ξk |Zµn
)

=
m∑

k=0

(−1)khµn∗(−
r+1∑

j=1

(−1)jξk |Zµn
⊗h∗µn

(∧jE∨)(j))

+
m∑

k=0

(−1)k

∫

Zg/S

Td(Thg)chg(ξk)(−1)r+1c̃hg(H).

Moreover, we have
∫

Xg/Y

Td(Tfg)chg(Tork
OZ

(i∗η,OZµn ))R(Ng)

=
∫

Xg/Y

−
r+1∑

j=1

(−1)jchg(Tork
OZ

(i∗η,OZµn )⊗ f∗µn
(∧jE∨)(j))R(Ng)Td(Tfg)
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and
∫

Zg/Y

Tg(ξ.)Td(Thg)

=
∫

Zg/Y

Td(Thg){δXg
Td−1

g (N)chg(η)(−1)r+1c̃hg(H)

−
m∑

k=0

(−1)kchg(ξk)(−1)r+1c̃hg(H)−
r+1∑

j=1

(−1)jTg(ξ.)chg(h∗µn
(∧jE∨)(j))}

by the double complex formula of equivariant Bott-Chern singular currents. At
last, we also have

∫

Xg/Y

chg(η)Td−1
g (N)T̃d((Tfg, ω

Z
X), Thg |Yg )

=
∫

Xg/Y

{ddc(−1)r+1c̃hg(H)chg(η)−
r+1∑

j=1

(−1)jchg(η ⊗ f∗(∧jE∨)(j))}

· Td−1
g (N)T̃d((Tfg, ω

Z
X), Thg |Xg )

=−
∫

Xg/Y

(−1)r+1c̃hg(H)chg(η) · {Td−1
g (N)Td(Thg)

− Td(Tfg, ω
Z
X)Td−1

g (F )}

−
∫

Xg/Y

r+1∑

j=1

(−1)jchg(η ⊗ f∗(∧jE∨)(j))Td−1
g (N)T̃d((Tfg, ω

Z
X), Thg |Xg ).

Gathering all these computations above and using our assumption, we get

fZ
µn∗(

∑
(−1)kTork

OZ
(i∗η,OZµn ))− hµn∗(

∑
(−1)kξk |Zµn )

−
∫

Zg/Y

Tg(ξ.)Td(Thg)−
∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)

−
∫

Xg/Y

chg(η)Td−1
g (N)T̃d((Tfg, ω

Z
X), Thg |Xg

)

=
∫

Xg/Y

Td(Tfg, ω
Z
X)Td−1

g (F )chg(η)(−1)r+1c̃hg(H)

−
m∑

k=0

(−1)k

∫

Zg/Y

Td(Thg)chg(ξk)(−1)r+1c̃hg(H)

−
∫

Xg/Y

Td(Thg)Td−1
g (N)chg(η)(−1)r+1c̃hg(H)

+
m∑

k=0

(−1)k

∫

Zg/Y

Td(Thg)chg(ξk)(−1)r+1c̃hg(H)
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+
∫

Xg/Y

(−1)r+1c̃hg(H)chg(η){Td−1
g (N)Td(Thg)

− Td(Tfg, ω
Z
X)Td−1

g (F )}

which vanishes. This ends the proof of our claim.
By the construction of the projective space bundle P , we have already known
that δ(Ψ(n)C) vanishes from n = 1 to n = r + 1. Moreover, according to the
projection formula of higher direct images, the operation of tensoring with the
element l∗(∧nE∨) doesn’t change the property of l-acyclicity. Hence we also
have δ(Ψ⊗ h∗(∧nE∨)(n)C) = 0. By the generating relations and the definition
of push-forward morphisms of arithmetic G0-groups, this is equivalent to say
that Theorem 6.3 holds for Ψ ⊗ h∗(∧nE∨)(n). Therefore the equality in the
statement of this theorem follows from our claim before.

Corollary 6.4. Let notations and assumptions be as in Theorem 6.3, and let
x be any element in K̂0(Z, µn, ∅)(ρ). Then the formula

fZ
µn∗(i

∗x |Xµn
·
∑

(−1)kTork
OZ

(i∗η,OZµn
))

− hµn∗(x |Zµn
·
∑

(−1)k(ξk |Zµn
))

=
∫

Zg/Y

Tg(ξ.)Td(Thg)chg(x)

+
∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)chg(i∗x)

+
∫

Xg/Y

chg(η)Td−1
g (N)chg(i∗x)T̃d((Tfg, ω

Z
X), Thg |Xg

)

holds in Ĝ0(Y, µn, ∅)(ρ).

Proof. If x = E is an equivariant hermitian vector bundle on Z, then ξ. ⊗ E
provides a resolution of i∗(η⊗i∗E). Hence the formula follows from Theorem 6.3
in this case. If x = α is represented by some smooth form, then

fZ
µn∗(i

∗x |Xµn ·
∑

(−1)kTork
OZ

(i∗η,OZµn ))

=
∫

Zg/Y

Td(Tfg, ω
Z
X)Td−1

g (F )chg(η)δXgα

and

hµn∗(x |Zµn ·
∑

(−1)k(ξk |Zµn )) =
∫

Zg/Y

Td(Thg)α
∑

(−1)kchg(ξk).
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Moreover, by the module structure on Ĝ0(Z, µn, S) we have
∫

Zg/Y

Tg(ξ.)Td(Thg)chg(x) =
∫

Zg/Y

chg(η)Td−1
g (N)δXg

Td(Thg)α

−
∫

Zg/Y

∑
(−1)kchg(ξk)Td(Thg)α

and ∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)chg(i∗x) = 0.

Finally, using the definition of T̃d we compute
∫

Xg/Y

chg(η)Td−1
g (N)chg(i∗x)T̃d((Tfg, ω

Z
X), Thg |Xg

)

=
∫

Zg/Y

Td(Tfg, ω
Z
X)Td−1

g (F )chg(η)δXgα

−
∫

Zg/Y

chg(η)Td−1
g (N)δXg

Td(Thg)α.

Gathering all computations above, we know that the formula still holds for x
which is represented by smooth form. Since both two sides are additive, we are
done.

Corollary 6.5. Let notations and assumptions be as in Theorem 6.3, and let
y be any element in K̂0(Zµn

, µn, ∅)(ρ). Then the formula

fZ
µn∗(i

∗
µn

y ·
∑

(−1)kTork
OZ

(i∗η,OZµn
))− hµn∗(y ·

∑
(−1)k(ξk |Zµn

))

=
∫

Zg/Y

Tg(ξ.)Td(Thg)chg(y)

+
∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)chg(i∗µn

y)

+
∫

Xg/Y

chg(η)Td−1
g (N)chg(i∗µn

y)T̃d((Tfg, ω
Z
X), Thg |Xg

)

holds in Ĝ0(Y, µn, ∅)(ρ).

Proof. Provided Corollary 6.4, it is enough to prove that for any y ∈
K̂0(Zµn

, µn, ∅)(ρ) there exists an element x ∈ K̂0(Z, µn, ∅)(ρ) such that i∗Zx = y.
Here iZ stands for the inclusion Zµn ↪→ Z. Actually, set x = iZ∗(λ

−1
−1(N

∨
Z/Zµn

)·
y), we have

i∗Zx = i∗ZiZ∗(λ
−1
−1(N

∨
Z/Zµn

) · y) = λ−1(N
∨
Z/Zµn

) · λ−1
−1(N

∨
Z/Zµn

) · y = y.

This follows from our arithmetic concentration theorem.
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6.3 Proof of the fixed point formula

In this subsection, we provide a complete proof of Theorem 6.1 the singular
Lefschetz fixed point formula. Before that, we need to translate Bismut-Ma’s
immersion formula to an arithmetic G0-theoretic version. That’s the following.

Theorem 6.6. Let notations and assumptions be as in Section 6.1. Assume
that η is an equivariant hermitian sheaf on X and ξ. is a bounded complex of
equivariant hermitian vector bundles providing a resolution of i∗η on Z whose
metrics satisfy Bismut assumption (A). Then the equality

fZ
∗ (η)−

m∑

j=0

(−1)jh∗(ξj) =
∫

Xg/Y

chg(η)Rg(N)Tdg(Tf)

+
∫

Zg/Y

Tg(ξ.)Tdg(Th)

+
∫

Xg/Y

chg(η)T̃dg((Tf, ωZ
X), Th |X)Td−1

g (N)

holds in Ĝ0(Y, µn, ∅).
Proof. We first suppose that η and ξ. are all acyclic, then the verification follows
rather directly from the generating relations of arithmetic G0-theory. In fact

fZ
∗ (η)−

m∑

j=0

(−1)jh∗(ξj) =f∗η − Tg(ωZ
X , hη)− (

m∑

j=0

(−1)j(h∗ξj − Tg(ωZ , hξj )))

=c̃hg(h∗Ξ)− Tg(ωZ
X , hη) +

m∑

j=0

(−1)jTg(ωZ , hξj ).

And the right-hand side of the last equality is exactly the left-hand side of
Bismut-Ma’s immersion formula. We emphasize again that to simplify the
right-hand side of Bismut-Ma’s immersion formula, we have used an Atiyah-
Segal-Singer type formula for immersion

ig∗(Td−1
g (N)chg(x)) = chg(i∗(x)).

To remove the condition of acyclicity, one can use the argument which is es-
sentially the same as in the proof of Theorem 6.3. Since it doesn’t use any new
techniques, we omit it here.

Definition 6.7. The inclusion i : X ↪→ Z induces an embedding morphism

i∗ : Ĝ0(X, µn, ∅) → K̂0(Z, µn, N∨
g,R \ {0})

which is defined as follows.
(i). For every µn-equivariant hermitian sheaf η on X, suppose that ξ. is a
resolution of i∗η on Z whose metrics satisfy Bismut assumption (A), i∗[η] =∑

k(−1)k[ξk] + Tg(ξ.).
(ii). For every α ∈ Ũ(Xµn

, ∅), i∗α = αTd−1
g (N)δXg

.
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Remark 6.8. Similar to Theorem 5.2 and Lemma 5.3, one can prove that the
embedding morphism is a well-defined homomorphism of R(µn)-modules.

Proof. (of Theorem 6.1) We first prove that this fixed point formula holds
when ωX is equal to ωZ

X , namely the Kähler metric on X(C) is induced by
the Kähler metric on Z(C). By Theorem 6.6 and Definition 6.7, we have the
following equality

fZ
∗ (η) =h∗i∗(η) +

∫

Xg/Y

chg(η)Rg(N)Tdg(Tf)

+
∫

Xg/Y

chg(η)T̃dg((Tf, ωZ
X), Th |X)Td−1

g (N)

which holds in Ĝ0(Y, µn, ∅). Now we claim that for any element y ∈
K̂0(Zµn

, µn, N∨
g,R \ {0})(ρ), we have

hµn∗(y)− h∗iZ∗(y) = hµn∗(y ·Rg(NZ/Zµn
)).

Since all morphisms are homomorphisms of R(µn)-modules, we can only con-
sider the generators of K̂0(Zµn

, µn, N∨
g,R \ {0}). Indeed, by applying Theo-

rem 6.6 to the closed immersion iZ , for any equivariant hermitian vector bundle
E on Zµn

we have

hµn∗(E)− h∗iZ∗(E) =
∫

Zg/Y

chg(E)Rg(NZ/Zµn
)Tdg(Thg)

=hµn∗(chg(E)Rg(NZ/Zµn
)).

The first equality holds because the exact sequence

0 → Thg → Th |Zg
→ NZ/Zg

→ 0

is orthogonally split on Zg so that T̃dg(Thg, Th |Zg
) = 0. The second equality

follows from [20, Lemma 7.3] and the fact that chg(E)Rg(NZ/Zµn
) is ddc-closed.

On the other hand, let α be an element in Ũ(Zµn
, N∨

g,R \ {0}), we have

hµn∗(α)− h∗iZ∗(α) =
∫

Zg/Y

αTdg(Thg)−
∫

Zg/Y

αTd−1
g (NZ/Zµn

)Tdg(Th)

=
∫

Zg/Y

αTd−1
g (NZ/Zµn

)ddcT̃dg(Thg, Th |Zg
) = 0.

Combing these two computations, we get our claim by linear extension.
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Now using arithmetic concentration theorem, we compute

h∗i∗(η) =h∗iZ∗iZ
−1
∗ i∗(η)

=hµn∗(iZ
−1
∗ i∗(η) · (1−Rg(NZ/Zµn

)))

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) · iZ∗i∗(η) · (1−Rg(NZ/Zµn
)))

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) · {
∑

k

(−1)k(ξk |Zµn )

+ Tg(ξ.)) · (1−Rg(NZ/Zµn
))}

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) ·
∑

k

(−1)k(ξk |Zµn
))

+ hµn∗(Tdg(NZ/Zµn
)Tg(ξ.))

− hµn∗(Tdg(NZ/Zµn
)
∑

k

(−1)kchg(ξk)Rg(NZ/Zµn
)).

According to Corollary 6.5, by setting y = λ−1
−1(N

∨
Z/Zµn

), we compute

hµn∗(λ
−1
−1(N

∨
Z/Zµn

) ·
∑

k

(−1)k(ξk |Zµn
))

=fZ
µn∗(i

∗
µn

(λ−1
−1(N

∨
Z/Zµn

)) ·
∑

(−1)kTork
OZ

(i∗η,OZµn
))

−
∫

Zg/Y

Tg(ξ.)Td(Thg)Tdg(NZ/Zg
)

−
∫

Xg/Y

Td(Tfg)Td−1
g (F )chg(η)R(Ng)Tdg(NZ/Zg

)

−
∫

Xg/Y

chg(η)Td−1
g (N)Tdg(NZ/Zg

)T̃d((Tfg, ω
Z
X), Thg |Xg

)

=fZ
µn∗(i

∗
µn

(λ−1
−1(N

∨
Z/Zµn

)) ·
∑

(−1)kTork
OZ

(i∗η,OZµn ))

−
∫

Zg/Y

Tg(ξ.)Tdg(Th)−
∫

Xg/Y

Tdg(Tf)chg(η)R(Ng)

−
∫

Xg/Y

chg(η)Td−1
g (N)Tdg(NZ/Zg

)T̃d((Tfg, ω
Z
X), Thg |Xg

).

Here we have used various relations of characteristic forms or classes arising
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from the following double complex

0

²²

0

²²

0

²²
0 // (Tfg, ω

Z
X) //

²²

Thg

²²

// Ng
//

²²

0

0 // (Tf, ωZ
X) //

²²

Th

²²

// N //

²²

0

0 // (NX/Xg
, ωZ

X) //

²²

NZ/Zg
//

²²

F

²²

// 0

0 0 0

whose columns are all orthogonally split. Also, for this double complex, we
would like to mention that an argument completely similar to the proof of the
equality [20, (26)] (just translate it to the relative setting) implies that

T̃dg((Tf, ωZ
X), Th |X) =T̃dg(F , ωZ

X)Td(Ng)Td(Tfg, ω
Z
X)

+ T̃d((Tfg, ω
Z
X), Thg |Xg )Tdg(NZ/Zg

). (11)

We deduce from (11) that

∫

Xg/Y

chg(η)T̃dg((Tf, ωZ
X), Th |X)Td−1

g (N)

=
∫

Xg/Y

chg(η)T̃d((Tfg, ω
Z
X), Thg |Xg )Td−1

g (N)Tdg(NZ/Zg
)

+
∫

Xg/Y

chg(η)T̃dg(F)Td−1
g (F )Td(Tfg, ω

Z
X). (12)

Moreover, we have

hµn∗(Tdg(NZ/Zµn
)Tg(ξ.)) =

∫

Zg/Y

Tg(ξ.)Td(Thg)Tdg(NZ/Zg
)

=
∫

Zg/Y

Tg(ξ.)Tdg(Th) (13)
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and

hµn∗(Tdg(NZ/Zµn
)
∑

k

(−1)kchg(ξk)Rg(NZ/Zµn
))

=
∫

Zg/Y

Tdg(NZ/Zµn
)δXg

chg(η)Td−1
g (N)Rg(NZ/Zg

)Td(Thg)

=
∫

Xg/Y

Tdg(NX/Xg
)Tdg(F )chg(η)Td−1

g (N)

· [Rg(NX/Xg
) + Rg(N)−R(Ng)]Td(Tfg)Td(Ng)

=
∫

Xg/Y

Tdg(Tf)chg(η)[Rg(NX/Xg
) + Rg(N)−R(Ng)]. (14)

Gathering (12), (13) and (14) we finally get

fZ
∗ (η) =fZ

µn∗(i
∗
µn

(λ−1
−1(NZ/Zµn

)) ·
∑

k

(−1)kTork
OZ

(i∗η,OZµn
))

+
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZ

X)Td−1
g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg
)

which completes the proof of Theorem 6.1 in the case where the Kähler metric
on X(C) is induced by the Kähler metric on Z(C).

In general, in analogy with the notation T̃d(Tfg, ω
X , ωZ

X), we write
T̃dg(NX/Xg

, ωX , ωZ
X) for the secondary characteristic class of the exact

sequence

0 // NX/Xg

Id // NX/Xg
// 0 // 0

where the middle term carries the metric induced by ωZ
X and the sub

term carries the metric induced by ωX . Similarly, we have the notation
T̃dg(Tf, ωX , ωZ

X). Then by applying the argument in the proof of (11) to
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the double complex

0

²²

0

²²

0

²²
0 // (Tfg, ω

X) //

²²

(Tfg, ω
Z
X)

²²

// 0 //

²²

0

0 // (Tf, ωX) //

²²

(Tf, ωZ
X)

²²

// 0 //

²²

0

0 // (NX/Xg
, ωX) //

²²

(NX/Xg
, ωZ

X) //

²²

0

²²

// 0

0 0 0

We get

T̃dg(Tf, ωX , ωZ
X) =T̃d(Tfg, ω

X , ωZ
X)Tdg(NX/Xg

, ωZ
X)

+ T̃dg(NX/Xg
, ωX , ωZ

X)Td(Tfg, ω
X).

Moreover, by [28, Proposition 2.8], we obtain that

T̃dg(F , ωX) = T̃dg(F , ωZ
X) + T̃dg(NX/Xg

, ωX , ωZ
X)Tdg(F ).

With these two comparison formulae, we can compute
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1

g (F )

−
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZ

X)Td−1
g (F )

=
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1

g (F )

−
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωZ

X)Td−1
g (F )

+
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωZ

X)Td−1
g (F )

−
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZ

X)Td−1
g (F )

=
∫

Xg/Y

T̃d(Tfg, ω
X , ωZ

X)chg(η)

· [Tdg(NX/Xg
, ωZ

X)Tdg(F )− Tdg(NZ/Zg
)]Td−1

g (F )
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+
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(NX/Xg

, ωX , ωZ
X)

=
∫

Xg/Y

chg(η)T̃dg(Tf, ωX , ωZ
X)

−
∫

Xg/Y

T̃d(Tfg, ω
X , ωZ

X)chg(η)Tdg(NZ/Zg
)Td−1

g (F ).

At last, using [20, Lemma 7.3], we get the equality

f∗(η)− fZ
∗ (η) =

∫

Xg/Y

chg(η)T̃dg(Tf, ωX , ωZ
X).

Together with the fact that the other two terms have nothing to do with the
choice of the metric ωX , we finally obtain that

f∗(η) =fZ
µn∗(i

∗
µn

(λ−1
−1(NZ/Zµn

)) ·
∑

k

(−1)kTork
OZ

(i∗η,OZµn ))

+
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1

g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg
)

+
∫

Xg/Y

T̃d(Tfg, ω
X , ωZ

X)chg(η)Tdg(NZ/Zg
)Td−1

g (F )

which ends the proof of Theorem 6.1.

Remark 6.9. Let Y be an affine arithmetic scheme Spec(D), and choose ωX

to be the induced Kähler form ωZ
X . Then the formula in Theorem 6.1 is the

content of [23, Conjecture 5.1].
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