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Abstract Given a line bundle L on a smooth projective curve over the com-
plex numbers, we show that a general extension E of L by the trivial line
bundle is very stable: line bundles contained in E have degree much less than
half the degree of E. From this result we deduce new inequalities for the suc-
cessive minima of the euclidean lattice H(X, L™1), where L is an hermitian
line bundle on the arithmetic surface X.
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1 Introduction

Let X be an arithmetic surface and N an hermitian line bundle on X. The
lattice

A=HYX,NY

is equipped with the L2-metric. In this paper we keep on studying the succes-

sive minima of this euclidean lattice; see [2], [3] and [4] for previous results.

When the degree of N is large enough we get a lower bound for the k-th
deg(IV)

minimum of A, when k& > ==~ + g, where g is the generic genus of X; cf.

Theorem 2 for a precise statement.

As in op. cit., we get this inequality by considering the extension

0—-0Ox -FE—N—0
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defined by a class e € A. If ¢ > 0 is an integer, we say that e is a-stable when
the restriction of E to the geometric generic fiber C' of X does not contain
any line bundle L with

deg(E) —a '

deg(L) > 5

The main ingredient in the proof of Theorem 2 is the assertion that any V C
HY(C,N~1) contains a class e which is a-stable when dim(V) is large enough
(Theorem 1). This is proved by induction, the case a = 0 being Proposition 2
in [4].

The paper is organized as follows. In Section 1 we introduce the notion of
a-stability for a rank two vector bundle on C'. The Lemma 1 relates a-stability
and semi-stability when E is an extension of line bundles. In Lemma 2 we
introduce secant varieties. Sections 1.4 to 1.9 are then devoted to the proof
of Theorem 1. In Section 2 we let N be an hermitian line bundle on some
arithmetic surface X. Proposition 2 gives a lower bound for the L?- norm of
e € Aifits restriction to C is a-stable. Theorem 2 follows by arguments similar
to those in [2], [3] and [4].

I thank Y. Miyaoka for suggesting to look at very stable bundles, and
C. Voisin for her comments on a first draft of this article.

2 Very stable extensions on curves
2.1

Let k£ be an algebraically closed field of characteristic zero and C' a smooth
projective curve of genus g over k. Let a > 0 be an integer. A rank two vector
bundle E over C is said to be a-stable when, for every line bundle L contained
in E, the following inequality holds:

deg(E) —a '

deg(L) <
eg(L) < 5

So, E is semi-stable (resp. stable) iff it is O-stable (resp. 1-stable).

2.2
Let M and L be two line bundles on C' and
0O—-L—-FE—-M-—0

an extension of M by L. Let A be an effective line bundle of degree a on C
and s : Oc — A a non trivial global section of A on C. If A=! is the dual
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of A and M A~ its tensor product with M, the section s defines an injective
morphism

i MA™' > M.
If we pull-back the extension E by i we get a commutative diagram
0 L E M —— 0
0 L E’ MA™Y —— 0

for some rank two vector bundle E’ on C.
Lemma 1. If E is a-stable, E’ is semi-stable.

Proof. The morphism E’ — E is injective, therefore any line bundle N con-
tained in E’ is also contained in E. Hence
deg(E) —a  deg(FE’)

< =
deg(N) < 5 5

and E’ is semi-stable.

2.3

Let N be a line bundle of degree n > 3 on C. Each cohomology class
e€ H'(C,N™') = Ext(N,0O¢)

classifies an extension
0—-0Oc—F—N-—=0

of N by the trivial line bundle. We say that e is a-stable (resp. semi-stable) if
E is a-stable (resp. semi-stable).
Let
P=PH'(C,N'))

be the projective space of lines in H*(C, N=1). If w is the sheaf of differentials
on C, Serre duality implies that H'(C, N~!) ~ H°(C,w ® N)* and we get a
canonical immersion C' — P. If D is an effective divisor on C' we let (D) C P
be the linear span of D, and |D| be the support of D. For every integer d > 0
we consider the secant variety

a= |J (D).

deg(D)=d

Lemma 2. The extension class e is a-stable iff its image € in P does not belong
to Xy when d < ”T*“

Proof. This follows from the arguments discussed in [1] p. 451, [3] §1.6 or [4]
§2.4.2.
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2.4
We keep the notation of the previous paragraph.

Theorem 1. Assume that n > a+ 3 and let V.C H'(C,N~1) be a k-vector

space of dimension

dim(V) > 0@

+g. (1)

Then there exists a class e € V' which is a-stable.

In view of Lemma 2, Theorem 1 can be rephrased as follows. Let § =
(n+a)/2. Assume that n > § +2. When d < § the secant variety Xy does not
contain any linear subspace P(V) with dim(V) > 4§ +g .

2.5

To prove Theorem 1 we can assume that n + a is even. Indeed, if n 4 a is odd
the condition (1) is equivalent to

1
dim(V) > % +9,

and, if e is (a + 1)-stable, it is also a-stable.

When n + a is even, we proceed by induction on a. When a = 0 (and n is
even) Theorem 1 is Proposition 2 in [4].

Assume Theorem 1 has been proved for a — 1. If P € C(k) is a point on C

we let
xp= U (D),

Peg|D|

deg(D)< "5*

and we consider a linear subspace V C H!(C,N~1!) of dimension at least
"T*'“ + g. Assume that P does not lie in the projective space P(V) C P.

Lemma 3. The intersection Xp NP(V) is a proper closed subset of P(V).

2.6

To prove Lemma 3, let N~'P be the tensor product of N—! with the line
bundle O(P) and
m:HY (C,N™') - HY(C,N~'P)

the corestriction morphism. Let
P =P(H'(C,N"'P))

and let
p:P—{P} P
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be the linear projection defined by 7. Since P is not in P(V'), we have n(V) =
V', where V' has the same dimension as V, and p induces an isomorphism

P(V) = P(V').

If D is a divisor on C such that P € |D|, p((D)) is the linear span (D — P)’
of D — P in . The secant variety

X= U o

deg(D)< 22 -1
is a closed subset of P, hence its inverse image
Xp - {P} =p(2)

is a closed subset of P — {P}.
If P(V') was contained in Xp, P(V') would be contained in X. But

mquzﬁquzﬁgﬁ+g>(”_D;m_1%+

hence, by the induction hypothesis, P(V’) contains a point & such that e’ is
(a — 1)-stable. Since

(n—1)+(a—1)

n—i—a_l: : ’

2

€ does not lie in X' (Lemma 2). This proves Lemma 3.

2.7

To prove Theorem 1 we can assume that dim(V) = 22 4¢. Since H'(C, N~ 1)
has dimension n + g — 1 and n > 3, V is a proper subspace of H'(C, N~1),
and P(V') does not contain C. Let Py, ..., P, be a distinct points of C\P(V)
and A the divisor

A=P +--+P,.

(From Lemma 3 we conclude that

v=e(v)- U (D)
|AIN|D[#£0
deg(D)< 4%

is a nonempty open subset of P(V). Let N~1A~! be the tensor product of
N~1 with O(—A) and

m: HY(C,N'A™") - H'(C,N1)
the corestriction map. Let P/ = P(H(C, N~tA~1)) and
p: P —(A) - P
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the projection induced by .

By Proposition 1 below, applied to N A instead of N and to W = 7=1(V),
there exists a non trivial class e € V such that e € U and each ¢’ € H(C, N~}
A~1) such that 7(e’) = e is semi-stable. Assume ¢ lies in (D), for some effective
divisor D on C. Then, either deg(D) > 24 or |[A|N|D| = 0 and deg(D) < ™£2.
In the latter case, since

deg(NAw) = (29— 2)+n+a > 29— 2+ deg(A) + deg(D),

we have

(AYN(D) =(AND)=10

([1] p- 434) and there exists & € (D)’ such that p(é’) = é. Since ¢’ is semi-stable
and deg(NA) = n + a, Lemma 2 implies that

n—+a
2

Applying Lemma 2 again, we conclude that e is a-stable.

deg(D) >

2.8

Let N be a line bundle of even positive degree n on C. Let
KcWcHYC,N™Y

be linear subspaces. We assume that V' = W/K is not zero and we let U C
P(V) be a nonempty open subset. Let m# : W — V be the projection and
a = dim(K).

Proposition 1. If dim(V) > § + g there exists € € V' such that & € U and
any e € W such that m(e) = € is semi-stable.

2.9

To prove Proposition 1, we first note, as in [4] p. 288, that there exist two
line bundles L and M on C such that LM = w and ML~! = N. Any class
e € HY(C,N~!) defines an extension

0—-L—-FE—-M-—0
and a boundary map
de: H'(C,M) — H*(C,L).

The bundle E is semi-stable iff J, is an isomorphism. We now adapt to our
situation the argument of C. Voisin in [4] 2.2. Let

w: HY(C, M)®? — W*
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be the composite of the cup-product with the projection
H°(C,M?) = H*(C,N~')* — W~*.

Any vector e € W defines, via y, a quadric ¢, in the projective space P(H®(C, M)).
The boundary map 0, is an isomorphism iff g, is non singular.

Arguing by contradiction, we assume that, for every e € V such that £ € U,
there exists e € W such that w(e) = € and g, is singular. When r > 1 is a
positive integer, we let U, C U be the set of those & such that there exist
e € W with m(e) = ¢ and the singular locus of g, has dimension . We have

U:UUT

r>1

and each set U, is constructible. Therefore there exists rg such that U,,
contains a dense open subset of P(V). Consider the Zariski closure B C
P(H®(C,M)) of the union of the singular loci of the quadrics with singular
locus of dimension g, and let b be the dimension of B.

Let o € H°(C, M) be a representative of a generic point & € B. We claim
that the map

o : HY(C, M) — W*
sending 7 to p(o ® 7) has rank at most a + b. Indeed ¢ € W is singular at 7 iff
it lies in the subspace @, C W orthogonal to the image of u,. The union of all
the vector spaces Q-, 7 € B, maps onto U,,. Therefore the dimension of @, is

at least dim(V')—b and the rank of u, is at most dim(W)—(dim(V)—b) = a+b,
as claimed.

It follows that the kernel H, of u, has dimension ¢ > m — a — b, where
m = dim H°(C, M). Arguing as in op. cit., p. 290, we find that the subspace
W+ c H°(C, M?) orthogonal to W has dimension at least

b+e>m—a.

Therefore, since H(C, N ') has dimension n+g—1, W has dimension at most
n+a+g—m— 1. By Riemann-Roch and the fact that 2deg(M) = 29 — 2 +n,
we know that

n
n—m+g§§+g.

Since dim(V') = dim(W) — a, we get
. n
dim(V) < §+g71,

contradicting our hypothesis.
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3 Arithmetic surfaces
3.1

Let F' be a number field, O its ring of integers and S = Spec(Op). Consider
a proper flat curve X over S such that X is regular and the generic fiber Xp
is geometrically irreducible of genus g. Let

deg : Pic(X) — Z

be the morphism which sends the class of a line bundle over X to the degree
of its restriction to Xp.

Let N = (N, h) be an hermitian line bundle on X. The cohomology group
A=HY(X,N71

is a finitely generated module over Op. It can be endowed as follows with an

hermitian norm. For every complex embedding o : FF — C, welet X, = X ® C
OF

be the corresponding complex curve. The cohomology group
Ay =A®C=H"(X,,N:"

is canonically isomorphic to the complex vector space H'(X,, Ng 1) of har-
monic differential forms of type (0, 1) with coefficients in the restriction Ng*
of N~! to X,. Given @ € H* (X, No') we let a* be its transposed conjugate
(the definition of which involves h), and we define

7
lollfs = 5= [ .

lell = Sup [|lo(e)l[ L ,
o

Given e € A we let

where o runs over all complex embeddings of F.

Let a > 0 be an integer and n the degree of N. We assume that n > a + 3.
Let A be an hermitian line bundle on X of degree deg(A4) = a,and s : Ox — A
a non zero global section of A. Define

[sllsup = Sup_||s(z)],
zeX(C)

where X (C) =[] X, is the set of complex points of X.
Any class e € A defines an extension
0—-0Ox >FE—N-—0

on X. If E_f is a fixed algebraic closure of F', we let Ez be the restriction of £
to Xp ® F. Denote by r = [F : Q] the absolute degree of F'.
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Proposition 2. Assume Ep is a-stable. Then the following inequality holds

ogllel > W =4
log e > 5o

where (N — A)? € R denotes the arithmetic self-intersection of the first Chern
_ —1
class ¢4(NA™Y) € CH (X).

— log ||5Hsup -1,

3.2

To prove Proposition 2 we consider the extension
0->0x >FE - NA1 50

obtained by pulling back e € H' (X, N~!) to ¢ € H'(X, N~tA). Since the
restriction of E’ to X is semi-stable (Lemma 1) we have

(N - Ay

1 > >—2
o8l 2 5=

—1 2)

(see [2] or [4] pp. 294-295). So we are left with comparing ||e|| and ||€’||.

We have a commutative diagram:

0 —— Ox E N —— 0
0 —— Ox E' NA™! —— 0.

Any C* splitting Ec — C of the top extension defines, by restriction, a C>°
splitting Ef. — C. The Cauchy-Riemann operators 0 and O/ can then be

written as matrices B
a a(c «
98 = (0 5N>

= (0c o

O = (o aNAl) ’
where « is a linear map C=°(Ng) — A% (C), and o’ : C®(NAZ') — A%(C)
is the restriction of a to NAEl.

and

For any o : F — C, choose a local chart z of X, and local trivializations
of N¢ and Ac. We have

a=pdz,

where ¢ is a smooth function and

o = pudz,
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where u is the local section of A defined by s. The transposed conjugates are

* @
of = ———dz
hN(la )

—_

and

)

o — hA(l 1)(,5@(1
hn(1,1)

where hx(1,1) (resp. ha(1,1)) is the squared norm of the local generator of
N (resp. A). It follows that

"o =ha(l,uaa*a = ||s|*a*a,

and )
(3
o/l = 55 [ oo’ < sl ol

Xo

Assume that the splitting Ec — C has been chosen such that « is harmonic.
Then we get

la 2 < Nsllsup llo(e)l 2 -
Since ||o(e’)|| L2 is the smallest value of ||a'||L2 when o’ runs over all represen-

tatives of €/ in A1 (X,, N"1Ac), we get

llo(eNllzz < lIsllsup llo(e)]| 2
hence
€'l < [Isllsup [lell -

This inequality and (2) imply Proposition 2.

3.3

We keep the notation of §2.1 and we consider the (logarithms of the) successive
minima of the euclidean lattice (4, | - ||). When k < rk(A), py is the infimum
of all real numbers p such that there exists k elements ey, ..., e, in A which
are linearly independent in A ® F and such that

lleil| < exp(p) forall i=1,...,k.

Theorem 2. Assume that

nTH+g§k<n+g—l.
Then _
> W= sl = C
2( a)r

where C =1+ log(d(n,a) k), and d(n,a) is bounded as in (3) below.



Very stable extensions on arithmetic surfaces 11

3.4

To prove Theorem 2 we let
VCH' (Xp, N HY=A®F

be the linear space spanned by eq,...,ex. Since k <n+g— 1, V is a proper
subspace of A ® F. From Theorem 1 we know that there exists e € V such
that the corresponding extension E of N by O¢ on C' = X is a-stable. More
precisely E is a-stable when € does not belong to P(V)NH (n,a), where H(n, a)
is an hypersurface defined as follows. When n + a is odd we let H(n,a) =
H(n,a 4+ 1). When n + a is even, H(n,a) is defined by induction on a. We
choose A = P; + ...+ P, as in 1.7. The class ¢ is a-stable when it satisfies
the following two conditions. First, for any P € |A|, the projection of & into
P(H'(C,N~1P)) should not lie in H(n — 1,a — 1). Second, let L and M be
line bundles on C such that LM = w and ML~! = NA; then, any class
¢ € P(HY(C,N~1A~1)) which maps to € € P(H'(C, N~1)) should be such
that the boundary map
der : HY(C, M) — H'(C, L)

is an isomorphism. Let m be the dimension of H°(C, M), o1,. .., 0., a basis of
H°(C, M), and 74,...,7,, a basis of H'(C, L)*. Then 0, is injective as soon
as it satisfies the inequation

(O (1) N oo e ANOer(Om)yTL A oo o AN Ti) # 0,
which is of degree m < ";r“ in €. It follows from the proof of Theorem 1 that
e is a-stable as soon as it satisfies these two conditions, which is the case when
€ ¢ H(n,a), where H(n,a) is an hypersurface of degree d(n,a) with

d(n,a) < HTM—Fad(n—l,a—l)

and n
Therefore we get
d(n,a) <p+alp—1)+ala—1)(p—2)+ala—1)(a—2)(p—3)

+...+alp—a), whenn+a=2por2p—1. (3)
Therefore, as in [3] Prop. 5, there exist k integers nq, . .., ng, with |n;| < d(n, a)
for all 7, such that

e=nieL+...+n;ex

does not lie in H(n,a). The extension E defined by e on X is then a-stable,
and Proposition 2 implies that
(N - A7

1 > 1 o — 1.
o8 llel] = 5= 108 Il

Since
lell < kd(n,a) exp(us)
Theorem 2 follows.



12 Christophe SOULE

References

1. A. Bertram, Moduli of rank 2 vector bundles, theta divisors, and the geometry of curves
in projective space, J. Diff. Geom., 35, 429-469 (1992)

2. C. Soulé, A vanishing theorem on arithmetic surfaces, Invent. Math., 116, 577-599 (1994)

3. C. Soulé, Secant varieties and successive minima, J. Algebraic Geom., 13, no. 2, 323-341
(2004)

4. C. Soulé, Semi-stable extensions on arithmetic surfaces, in “ Moduli Spaces and Arith-
metic Geometry 7 (Kyoto 2004), Advanced Studies in Pure Maths., 45, 283-295 (2006)



