Very stable extensions on arithmetic surfaces

Christophe Soulé

Received: date / Accepted: date

Abstract Given a line bundle L on a smooth projective curve over the complex numbers, we show that a general extension E of L by the trivial line bundle is *very stable*: line bundles contained in E have degree much less than half the degree of E. From this result we deduce new inequalities for the successive minima of the euclidean lattice $H^1(X, L^{-1})$, where L is an hermitian line bundle on the arithmetic surface X.

Keywords Projective curve \cdot Semi-stable bundle \cdot Secant variety \cdot Arithmetic surface \cdot Successive minima

Mathematics Subject Classification (2000) MSC 14H60 · MSC 14G40

1 Introduction

Let X be an arithmetic surface and \bar{N} an hermitian line bundle on X. The lattice

$$\Lambda = H^1(X, N^{-1})$$

is equipped with the L^2 -metric. In this paper we keep on studying the successive minima of this euclidean lattice; see [2], [3] and [4] for previous results. When the degree of N is large enough we get a lower bound for the k-th minimum of Λ , when $k > \frac{\deg(N)}{2} + g$, where g is the generic genus of X; cf. Theorem 2 for a precise statement.

As in op. cit., we get this inequality by considering the extension

$$0 \to \mathcal{O}_X \to E \to N \to 0$$

C. Soulé

IHÉS, 35 route de Chartres, 91440 Bures-sur-Yvette, France E-mail: soule@ihes.fr

defined by a class $e \in A$. If $a \ge 0$ is an integer, we say that e is *a-stable* when the restriction of E to the geometric generic fiber C of X does not contain any line bundle L with

$$\deg(L) > \frac{\deg(E) - a}{2}.$$

The main ingredient in the proof of Theorem 2 is the assertion that any $V \subset H^1(C, N^{-1})$ contains a class e which is a-stable when dim(V) is large enough (Theorem 1). This is proved by induction, the case a = 0 being Proposition 2 in [4].

The paper is organized as follows. In Section 1 we introduce the notion of *a*-stability for a rank two vector bundle on *C*. The Lemma 1 relates *a*-stability and semi-stability when *E* is an extension of line bundles. In Lemma 2 we introduce secant varieties. Sections 1.4 to 1.9 are then devoted to the proof of Theorem 1. In Section 2 we let \overline{N} be an hermitian line bundle on some arithmetic surface *X*. Proposition 2 gives a lower bound for the L^2 - norm of $e \in \Lambda$ if its restriction to *C* is *a*-stable. Theorem 2 follows by arguments similar to those in [2], [3] and [4].

I thank Y. Miyaoka for suggesting to look at very stable bundles, and C. Voisin for her comments on a first draft of this article.

2 Very stable extensions on curves

2.1

Let k be an algebraically closed field of characteristic zero and C a smooth projective curve of genus g over k. Let $a \ge 0$ be an integer. A rank two vector bundle E over C is said to be a-stable when, for every line bundle L contained in E, the following inequality holds:

$$\deg(L) \le \frac{\deg(E) - a}{2} \,.$$

So, E is semi-stable (resp. stable) iff it is 0-stable (resp. 1-stable).

2.2

Let M and L be two line bundles on C and

$$0 \to L \to E \to M \to 0$$

an extension of M by L. Let A be an effective line bundle of degree a on Cand $s : \mathcal{O}_C \to A$ a non trivial global section of A on C. If A^{-1} is the dual of A and MA^{-1} its tensor product with M, the section s defines an injective morphism

$$i: MA^{-1} \to M$$
.

If we pull-back the extension E by i we get a commutative diagram

for some rank two vector bundle E' on C.

Lemma 1. If E is a-stable, E' is semi-stable.

Proof. The morphism $E' \to E$ is injective, therefore any line bundle N contained in E' is also contained in E. Hence

$$\deg(N) \le \frac{\deg(E) - a}{2} = \frac{\deg(E')}{2}$$

and E' is semi-stable.

2.3

Let N be a line bundle of degree $n \geq 3$ on C. Each cohomology class

$$e \in H^1(C, N^{-1}) = \operatorname{Ext}(N, \mathcal{O}_C)$$

classifies an extension

$$0 \to \mathcal{O}_C \to E \to N \to 0$$

of N by the trivial line bundle. We say that e is *a-stable* (resp. *semi-stable*) if E is *a*-stable (resp. semi-stable).

Let

$$\mathbb{P} = \mathbb{P}(H^1(C, N^{-1}))$$

be the projective space of lines in $H^1(C, N^{-1})$. If ω is the sheaf of differentials on C, Serre duality implies that $H^1(C, N^{-1}) \simeq H^0(C, \omega \otimes N)^*$ and we get a canonical immersion $C \to \mathbb{P}$. If D is an effective divisor on C we let $\langle D \rangle \subset \mathbb{P}$ be the linear span of D, and |D| be the support of D. For every integer $d \ge 0$ we consider the secant variety

$$\Sigma_d = \bigcup_{\deg(D)=d} \langle D \rangle \,.$$

Lemma 2. The extension class e is a-stable iff its image \bar{e} in \mathbb{P} does not belong to Σ_d when $d < \frac{n+a}{2}$.

Proof. This follows from the arguments discussed in [1] p. 451, [3] $\S1.6$ or [4] $\S2.4.2$.

We keep the notation of the previous paragraph.

Theorem 1. Assume that $n \ge a + 3$ and let $V \subset H^1(C, N^{-1})$ be a k-vector space of dimension

$$\dim(V) \ge \frac{n+a}{2} + g. \tag{1}$$

Then there exists a class $e \in V$ which is a-stable.

In view of Lemma 2, Theorem 1 can be rephrased as follows. Let $\delta = (n+a)/2$. Assume that $n \geq \delta + 2$. When $d < \delta$ the secant variety Σ_d does not contain any linear subspace $\mathbb{P}(V)$ with $\dim(V) \geq \delta + g$.

2.5

To prove Theorem 1 we can assume that n + a is even. Indeed, if n + a is odd the condition (1) is equivalent to

$$\dim(V) \ge \frac{n+a+1}{2} + g\,,$$

and, if e is (a + 1)-stable, it is also a-stable.

When n + a is even, we proceed by induction on a. When a = 0 (and n is even) Theorem 1 is Proposition 2 in [4].

Assume Theorem 1 has been proved for a - 1. If $P \in C(k)$ is a point on C we let

$$X_P = \bigcup_{\substack{P \in |D| \\ \deg(D) < \frac{n+a}{2}}} \langle D \rangle,$$

and we consider a linear subspace $V \subset H^1(C, N^{-1})$ of dimension at least $\frac{n+a}{2} + g$. Assume that P does not lie in the projective space $\mathbb{P}(V) \subset \mathbb{P}$.

Lemma 3. The intersection $X_P \cap \mathbb{P}(V)$ is a proper closed subset of $\mathbb{P}(V)$.

2.6

To prove Lemma 3, let $N^{-1}P$ be the tensor product of N^{-1} with the line bundle $\mathcal{O}(P)$ and

$$\pi: H^1(C, N^{-1}) \to H^1(C, N^{-1}P)$$

the corestriction morphism. Let

$$\mathbb{P}' = \mathbb{P}(H^1(C, N^{-1}P))$$

and let

$$p: \mathbb{P} - \{P\} \to \mathbb{P}'$$

2.4

be the linear projection defined by π . Since P is not in $\mathbb{P}(V)$, we have $\pi(V) = V'$, where V' has the same dimension as V, and p induces an isomorphism

$$\mathbb{P}(V) \xrightarrow{\sim} \mathbb{P}(V').$$

If D is a divisor on C such that $P \in |D|$, $p(\langle D \rangle)$ is the linear span $\langle D - P \rangle'$ of D - P in \mathbb{P}' . The secant variety

$$\varSigma = \bigcup_{\deg(D) < \frac{n+a}{2} - 1} \langle D \rangle'$$

is a closed subset of \mathbb{P}' , hence its inverse image

$$X_P - \{P\} = p^{-1}(\varSigma)$$

is a closed subset of $\mathbb{P} - \{P\}$.

If $\mathbb{P}(V)$ was contained in X_P , $\mathbb{P}(V')$ would be contained in Σ . But

$$\dim(V') = \dim(V) \ge \frac{n+a}{2} + g > \frac{(n-1) + (a-1)}{2} + g$$

hence, by the induction hypothesis, $\mathbb{P}(V')$ contains a point \bar{e}' such that e' is (a-1)-stable. Since

$$\frac{n+a}{2} - 1 = \frac{(n-1) + (a-1)}{2}$$

 \bar{e}' does not lie in Σ (Lemma 2). This proves Lemma 3.

2.7

To prove Theorem 1 we can assume that $\dim(V) = \frac{n+a}{2} + g$. Since $H^1(C, N^{-1})$ has dimension n + g - 1 and $n \ge 3$, V is a proper subspace of $H^1(C, N^{-1})$, and $\mathbb{P}(V)$ does not contain C. Let P_1, \ldots, P_a be a distinct points of $C \setminus \mathbb{P}(V)$ and A the divisor

$$A = P_1 + \dots + P_a \, .$$

¿From Lemma 3 we conclude that

$$U = \mathbb{P}(V) - \bigcup_{\substack{|A| \cap |D| \neq \emptyset \\ \deg(D) < \frac{n+a}{2}}} \langle D \rangle$$

is a nonempty open subset of $\mathbb{P}(V)$. Let $N^{-1}A^{-1}$ be the tensor product of N^{-1} with $\mathcal{O}(-A)$ and

$$\pi: H^1(C, N^{-1}A^{-1}) \to H^1(C, N^{-1})$$

the corestriction map. Let $\mathbb{P}'=\mathbb{P}(H^1(C,N^{-1}A^{-1}))$ and

$$p: \mathbb{P}' - \langle A \rangle' \to \mathbb{P}$$

the projection induced by π .

By Proposition 1 below, applied to NA instead of N and to $W = \pi^{-1}(V)$, there exists a non trivial class $e \in V$ such that $\bar{e} \in U$ and each $e' \in H^1(C, N^{-1} A^{-1})$ such that $\pi(e') = e$ is semi-stable. Assume \bar{e} lies in $\langle D \rangle$, for some effective divisor D on C. Then, either $\deg(D) \geq \frac{n+a}{2}$ or $|A| \cap |D| = \emptyset$ and $\deg(D) < \frac{n+a}{2}$. In the latter case, since

$$\deg(NA\,\omega) = (2g - 2) + n + a > 2g - 2 + \deg(A) + \deg(D),$$

we have

$$\langle A \rangle \cap \langle D \rangle = \langle A \cap D \rangle = \emptyset$$

([1] p. 434) and there exists $\bar{e}' \in \langle D \rangle'$ such that $p(\bar{e}') = \bar{e}$. Since e' is semi-stable and deg(NA) = n + a, Lemma 2 implies that

$$\deg(D) \ge \frac{n+a}{2} \,.$$

Applying Lemma 2 again, we conclude that e is a-stable.

2.8

Let N be a line bundle of even positive degree n on C. Let

$$K \subset W \subset H^1(C, N^{-1})$$

be linear subspaces. We assume that V = W/K is not zero and we let $U \subset \mathbb{P}(V)$ be a nonempty open subset. Let $\pi : W \to V$ be the projection and $a = \dim(K)$.

Proposition 1. If $\dim(V) \ge \frac{n}{2} + g$ there exists $\varepsilon \in V$ such that $\overline{\varepsilon} \in U$ and any $e \in W$ such that $\pi(e) = \varepsilon$ is semi-stable.

2.9

To prove Proposition 1, we first note, as in [4] p. 288, that there exist two line bundles L and M on C such that $LM = \omega$ and $ML^{-1} = N$. Any class $e \in H^1(C, N^{-1})$ defines an extension

$$0 \to L \to E \to M \to 0$$

and a boundary map

$$\partial_e: H^0(C, M) \to H^1(C, L).$$

The bundle E is semi-stable iff ∂_e is an isomorphism. We now adapt to our situation the argument of C. Voisin in [4] 2.2. Let

$$\mu: H^0(C, M)^{\otimes 2} \to W^*$$

be the composite of the cup-product with the projection

$$H^0(C, M^2) = H^1(C, N^{-1})^* \to W^*$$
.

Any vector $e \in W$ defines, via μ , a quadric q_e in the projective space $\mathbb{P}(H^0(C, M))$. The boundary map ∂_e is an isomorphism iff q_e is non singular.

Arguing by contradiction, we assume that, for every $\varepsilon \in V$ such that $\overline{\varepsilon} \in U$, there exists $e \in W$ such that $\pi(e) = \varepsilon$ and q_e is singular. When $r \ge 1$ is a positive integer, we let $U_r \subset U$ be the set of those $\overline{\varepsilon}$ such that there exist $e \in W$ with $\pi(e) = \varepsilon$ and the singular locus of q_e has dimension r. We have

$$U = \bigcup_{r \ge 1} U_r$$

and each set U_r is constructible. Therefore there exists r_0 such that U_{r_0} contains a dense open subset of $\mathbb{P}(V)$. Consider the Zariski closure $B \subset \mathbb{P}(H^0(C, M))$ of the union of the singular loci of the quadrics with singular locus of dimension r_0 , and let b be the dimension of B.

Let $\sigma \in H^0(C, M)$ be a representative of a generic point $\bar{\sigma} \in B$. We claim that the map

$$\mu_{\sigma}: H^0(C, M) \to W^*$$

sending τ to $\mu(\sigma \otimes \tau)$ has rank at most a + b. Indeed $q \in W$ is singular at τ iff it lies in the subspace $Q_{\tau} \subset W$ orthogonal to the image of μ_{τ} . The union of all the vector spaces $Q_{\tau}, \bar{\tau} \in B$, maps onto U_{r_0} . Therefore the dimension of Q_{σ} is at least dim(V)-b and the rank of μ_{σ} is at most dim $(W)-(\dim(V)-b) = a+b$, as claimed.

It follows that the kernel H_{σ} of μ_{σ} has dimension $c \geq m - a - b$, where $m = \dim H^0(C, M)$. Arguing as in *op. cit.*, p. 290, we find that the subspace $W^{\perp} \subset H^0(C, M^2)$ orthogonal to W has dimension at least

$$b+c \ge m-a \, .$$

Therefore, since $H^1(C, N^{-1})$ has dimension n+g-1, W has dimension at most n+a+g-m-1. By Riemann-Roch and the fact that $2\deg(M) = 2g-2+n$, we know that

$$n-m+g \le \frac{n}{2}+g.$$

Since $\dim(V) = \dim(W) - a$, we get

$$\dim(V) \le \frac{n}{2} + g - 1,$$

contradicting our hypothesis.

3 Arithmetic surfaces

3.1

Let F be a number field, \mathcal{O}_F its ring of integers and $S = \text{Spec}(\mathcal{O}_F)$. Consider a proper flat curve X over S such that X is regular and the generic fiber X_F is geometrically irreducible of genus g. Let

$$\deg: \operatorname{Pic}(X) \to \mathbb{Z}$$

be the morphism which sends the class of a line bundle over X to the degree of its restriction to X_F .

Let $\overline{N} = (N, h)$ be an hermitian line bundle on X. The cohomology group

$$\Lambda = H^1(X, N^{-1})$$

is a finitely generated module over \mathcal{O}_F . It can be endowed as follows with an hermitian norm. For every complex embedding $\sigma: F \to \mathbb{C}$, we let $X_{\sigma} = X \bigotimes_{\mathcal{O}} \mathbb{C}$

be the corresponding complex curve. The cohomology group

$$\Lambda_{\sigma} = \Lambda \otimes \mathbb{C} = H^1(X_{\sigma}, N_{\mathbb{C}}^{-1})$$

is canonically isomorphic to the complex vector space $\mathcal{H}^{01}(X_{\sigma}, N_{\mathbb{C}}^{-1})$ of harmonic differential forms of type (0, 1) with coefficients in the restriction $N_{\mathbb{C}}^{-1}$ of N^{-1} to X_{σ} . Given $\alpha \in \mathcal{H}^{01}(X_{\sigma}, N_{\mathbb{C}}^{-1})$ we let α^* be its transposed conjugate (the definition of which involves h), and we define

$$\|\alpha\|_{L^2}^2 = \frac{i}{2\pi} \int_{X_\sigma} \alpha^* \alpha \,.$$

Given $e \in \Lambda$ we let

$$\|e\| = \sup_{\sigma} \|\sigma(e)\|_{L^2}$$

where σ runs over all complex embeddings of F.

Let $a \ge 0$ be an integer and n the degree of N. We assume that $n \ge a+3$. Let \overline{A} be an hermitian line bundle on X of degree deg(A) = a, and $s : \mathcal{O}_X \to A$ a non zero global section of A. Define

$$\|s\|_{\sup} = \sup_{x \in X(\mathbb{C})} \|s(x)\|,$$

where $X(\mathbb{C}) = \coprod X_{\sigma}$ is the set of complex points of X.

Any class $e \in \Lambda$ defines an extension

$$0 \to \mathcal{O}_X \to E \to N \to 0$$

on X. If \overline{F} is a fixed algebraic closure of F, we let $E_{\overline{F}}$ be the restriction of E to $X_F \otimes \overline{F}$. Denote by $r = [F : \mathbb{Q}]$ the absolute degree of F.

Proposition 2. Assume $E_{\bar{F}}$ is a-stable. Then the following inequality holds

$$\log \|e\| \ge \frac{(\bar{N} - \bar{A})^2}{2(n-a) r} - \log \|s\|_{\sup} - 1$$

where $(\bar{N} - \bar{A})^2 \in \mathbb{R}$ denotes the arithmetic self-intersection of the first Chern class $\hat{c}_1(\bar{N}\bar{A}^{-1}) \in \widehat{CH}^1(X)$.

3.2

To prove Proposition 2 we consider the extension

$$0 \to \mathcal{O}_X \to E' \to NA^{-1} \to 0$$

obtained by pulling back $e \in H^1(X, N^{-1})$ to $e' \in H^1(X, N^{-1}A)$. Since the restriction of E' to $X_{\overline{F}}$ is semi-stable (Lemma 1) we have

$$\log \|e'\| \ge \frac{(\bar{N} - \bar{A})^2}{2(n-a)r} - 1 \tag{2}$$

(see [2] or [4] pp. 294-295). So we are left with comparing ||e|| and ||e'||.

We have a commutative diagram:

Any C^{∞} splitting $E_{\mathbb{C}} \to \mathbb{C}$ of the top extension defines, by restriction, a C^{∞} splitting $E'_{\mathbb{C}} \to \mathbb{C}$. The Cauchy-Riemann operators $\bar{\partial}_E$ and $\bar{\partial}_{E'}$ can then be written as matrices

$$\bar{\partial}_E = \begin{pmatrix} \partial_{\mathbb{C}} & \alpha \\ 0 & \bar{\partial}_N \end{pmatrix}$$

and

$$\bar{\partial}_{E'} = \begin{pmatrix} \bar{\partial}_{\mathbb{C}} & \alpha' \\ 0 & \bar{\partial}_{NA^{-1}} \end{pmatrix}$$

where α is a linear map $C^{\infty}(N_{\mathbb{C}}) \to A^{01}(\mathbb{C})$, and $\alpha' : C^{\infty}(NA_{\mathbb{C}}^{-1}) \to A^{01}(\mathbb{C})$ is the restriction of α to $NA_{\mathbb{C}}^{-1}$.

For any $\sigma: F \to \mathbb{C}$, choose a local chart z of X_{σ} and local trivializations of $N_{\mathbb{C}}$ and $A_{\mathbb{C}}$. We have

$$\alpha = \varphi \, d\bar{z} \,,$$

where φ is a smooth function and

$$\alpha' = \varphi u \, d\bar{z} \, .$$

where u is the local section of A defined by s. The transposed conjugates are

$$\alpha^* = \frac{\bar{\varphi}}{h_N(1,1)} \, dz$$

and

$$\alpha'^* = \frac{h_A(1,1)\,\bar{\varphi}\,\bar{u}\,dz}{h_N(1,1)}$$

,

where $h_N(1,1)$ (resp. $h_A(1,1)$) is the squared norm of the local generator of N (resp. A). It follows that

$$\alpha'^* \alpha' = h_A(1,1) u \,\overline{u} \,\alpha^* \alpha = \|s\|^2 \,\alpha^* \alpha \,,$$

and

$$\|\alpha'\|_{L^2}^2 = \frac{i}{2\pi'} \int_{X_{\sigma}} \alpha'^* \, \alpha' \le \|s\|_{\sup}^2 \, \|\alpha\|_{L^2}^2$$

Assume that the splitting $E_{\mathbb{C}}\to \mathbb{C}$ has been chosen such that α is harmonic. Then we get

$$\|\alpha'\|_{L^2} \le \|s\|_{\sup} \|\sigma(e)\|_{L^2}$$
.

Since $\|\sigma(e')\|_{L^2}$ is the smallest value of $\|\alpha'\|_{L^2}$ when α' runs over all representatives of e' in $A^{01}(X_{\sigma}, N^{-1}A_{\mathbb{C}})$, we get

$$\|\sigma(e')\|_{L^2} \le \|s\|_{\sup} \|\sigma(e)\|_{L^2}$$

hence

$$||e'|| \le ||s||_{\sup} ||e||$$

This inequality and (2) imply Proposition 2.

3.3

We keep the notation of §2.1 and we consider the (logarithms of the) successive minima of the euclidean lattice $(\Lambda, \|\cdot\|)$. When $k \leq rk(\Lambda)$, μ_k is the infimum of all real numbers μ such that there exists k elements e_1, \ldots, e_k in Λ which are linearly independent in $\Lambda \otimes F$ and such that

$$||e_i|| \le \exp(\mu)$$
 for all $i = 1, \dots, k$.

Theorem 2. Assume that

$$\frac{n+a}{2} + g \leq k < n+g-1 \,.$$

Then

$$\mu_k \ge \frac{(\bar{N} - \bar{A})^2}{2(n-a)r} - \log ||s||_{\sup} - C,$$

where $C = 1 + \log(d(n, a)k)$, and d(n, a) is bounded as in (3) below.

V

3.4

To prove Theorem 2 we let

$$\subset H^1(X_{\bar{F}}, N^{-1}) = \Lambda \otimes \bar{F}$$

be the linear space spanned by e_1, \ldots, e_k . Since k < n + g - 1, V is a proper subspace of $A \otimes \overline{F}$. From Theorem 1 we know that there exists $e \in V$ such that the corresponding extension E of N by \mathcal{O}_C on $C = X_{\overline{F}}$ is *a*-stable. More precisely E is *a*-stable when \overline{e} does not belong to $\mathbb{P}(V) \cap H(n, a)$, where H(n, a)is an hypersurface defined as follows. When n + a is odd we let H(n, a) =H(n, a + 1). When n + a is even, H(n, a) is defined by induction on a. We choose $A = P_1 + \ldots + P_a$ as in 1.7. The class \overline{e} is *a*-stable when it satisfies the following two conditions. First, for any $P \in |A|$, the projection of \overline{e} into $\mathbb{P}(H^1(C, N^{-1}P))$ should not lie in H(n - 1, a - 1). Second, let L and M be line bundles on C such that $LM = \omega$ and $ML^{-1} = NA$; then, any class $\overline{e}' \in \mathbb{P}(H^1(C, N^{-1}A^{-1}))$ which maps to $\overline{e} \in \mathbb{P}(H^1(C, N^{-1}))$ should be such that the boundary map

$$\partial_{e'}: H^0(C, M) \to H^1(C, L)$$

is an isomorphism. Let m be the dimension of $H^0(C, M)$, $\sigma_1, \ldots, \sigma_m$ a basis of $H^0(C, M)$, and τ_1, \ldots, τ_m a basis of $H^1(C, L)^*$. Then $\partial_{e'}$ is injective as soon as it satisfies the inequation

$$\partial_{e'}(\sigma_1) \wedge \ldots \wedge \partial_{e'}(\sigma_m), \tau_1 \wedge \ldots \wedge \tau_m) \neq 0,$$

which is of degree $m \leq \frac{n+a}{2}$ in e'. It follows from the proof of Theorem 1 that \bar{e} is *a*-stable as soon as it satisfies these two conditions, which is the case when $\bar{e} \notin H(n, a)$, where H(n, a) is an hypersurface of degree d(n, a) with

$$d(n,a) \le \frac{n+a}{2} + a d(n-1,a-1)$$

and

$$d(n,0) \le \frac{n}{2} \,.$$

Therefore we get

$$d(n,a) \le p + a(p-1) + a(a-1)(p-2) + a(a-1)(a-2)(p-3) + \ldots + a!(p-a), \quad \text{when } n+a = 2p \text{ or } 2p-1.$$
(3)

Therefore, as in [3] Prop. 5, there exist k integers n_1, \ldots, n_k , with $|n_i| \le d(n, a)$ for all i, such that

$$e = n_1 e_1 + \ldots + n_k e_k$$

 ϵ

does not lie in H(n, a). The extension E defined by e on X is then a-stable, and Proposition 2 implies that

$$\log \|e\| \ge \frac{(N-\bar{A})^2}{2(n-a)r} - \log \|s\|_{\sup} - 1.$$

Since

$$||e|| \le k d(n,a) \exp(\mu_k)$$

Theorem 2 follows.

References

- 1. A. Bertram, Moduli of rank 2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Diff. Geom., 35, 429-469 (1992)
- C. Soulé, A vanishing theorem on arithmetic surfaces, Invent. Math., 116, 577-599 (1994)
 C. Soulé, Secant varieties and successive minima, J. Algebraic Geom., 13, no. 2, 323-341 (2004)
- 4. C. Soulé, Semi-stable extensions on arithmetic surfaces, in "Moduli Spaces and Arithmetic Geometry" (Kyoto 2004), Advanced Studies in Pure Maths., 45, 283-295 (2006)